7. Kaleidoscope: 扩展语言:可变变量

7.1. 第 7 章 导言

欢迎来到“使用 LLVM 实现语言”教程的第 7 章。在第 1 章到第 6 章中,我们构建了一个非常值得尊敬的,虽然简单,但仍然是函数式编程语言。在我们的旅程中,我们学习了一些解析技术,如何构建和表示 AST,如何构建 LLVM IR,以及如何优化结果代码以及 JIT 编译它。

虽然 Kaleidoscope 作为一个函数式语言很有趣,但事实上它是函数式的,这使得为其生成 LLVM IR “太容易”了。特别是,函数式语言使得直接以 SSA 形式构建 LLVM IR 非常容易。由于 LLVM 要求输入代码为 SSA 形式,这是一个非常好的特性,并且对于新手来说,如何为具有可变变量的命令式语言生成代码通常是不清楚的。

本章的简短(且令人高兴的)总结是,您的前端无需构建 SSA 形式:LLVM 提供了高度调整和良好测试的支持,尽管它的工作方式对某些人来说有点出乎意料。

7.2. 为什么这是一个难题?

为了理解为什么可变变量会在 SSA 构建中引起复杂性,请考虑这个极其简单的 C 示例

int G, H;
int test(_Bool Condition) {
  int X;
  if (Condition)
    X = G;
  else
    X = H;
  return X;
}

在这种情况下,我们有变量 “X”,其值取决于程序中执行的路径。由于在 return 指令之前 X 有两个不同的可能值,因此插入一个 PHI 节点以合并这两个值。我们希望此示例的 LLVM IR 看起来像这样

@G = weak global i32 0   ; type of @G is i32*
@H = weak global i32 0   ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:
  br i1 %Condition, label %cond_true, label %cond_false

cond_true:
  %X.0 = load i32, i32* @G
  br label %cond_next

cond_false:
  %X.1 = load i32, i32* @H
  br label %cond_next

cond_next:
  %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
  ret i32 %X.2
}

在此示例中,从 G 和 H 全局变量的加载在 LLVM IR 中是显式的,并且它们存在于 if 语句的 then/else 分支(cond_true/cond_false)中。为了合并传入的值,cond_next 块中的 X.2 phi 节点根据控制流的来源选择要使用的正确值:如果控制流来自 cond_false 块,则 X.2 获取 X.1 的值。或者,如果控制流来自 cond_true,则它获取 X.0 的值。本章的目的不是解释 SSA 形式的细节。有关更多信息,请参阅许多 在线参考资料之一。

本文的问题是“当降低对可变变量的赋值时,谁放置 phi 节点?”。这里的问题是 LLVM *要求* 其 IR 必须是 SSA 形式:没有“非 SSA”模式。但是,SSA 构建需要非平凡的算法和数据结构,因此对于每个前端来说,都必须重现此逻辑,这既不方便又浪费。

7.3. LLVM 中的内存

这里的“技巧”是,虽然 LLVM 确实要求所有寄存器值都采用 SSA 形式,但它不要求(或允许)内存对象采用 SSA 形式。在上面的示例中,请注意从 G 和 H 的加载是对 G 和 H 的直接访问:它们没有被重命名或版本化。这与其他一些尝试对内存对象进行版本控制的编译器系统不同。在 LLVM 中,不是将内存的数据流分析编码到 LLVM IR 中,而是通过 分析 Pass 来处理,这些 Pass 是按需计算的。

考虑到这一点,高级思想是,我们希望为函数中的每个可变对象创建一个栈变量(它驻留在内存中,因为它在栈上)。为了利用这个技巧,我们需要讨论 LLVM 如何表示栈变量。

在 LLVM 中,所有内存访问都通过显式的 load/store 指令进行,并且经过精心设计,不需要(或需要)“address-of”运算符。请注意,@G/@H 全局变量的类型实际上是 “i32*”,即使该变量定义为 “i32”。这意味着 @G 在全局数据区域中为 i32 定义了 *空间*,但其 *名称* 实际上是指该空间的地址。栈变量的工作方式相同,只是它们不是用全局变量定义声明的,而是用 LLVM alloca 指令 声明的

define i32 @example() {
entry:
  %X = alloca i32           ; type of %X is i32*.
  ...
  %tmp = load i32, i32* %X  ; load the stack value %X from the stack.
  %tmp2 = add i32 %tmp, 1   ; increment it
  store i32 %tmp2, i32* %X  ; store it back
  ...

此代码显示了如何在 LLVM IR 中声明和操作栈变量的示例。使用 alloca 指令分配的栈内存是完全通用的:您可以将栈槽的地址传递给函数,您可以将其存储在其他变量中等等。在上面的示例中,我们可以重写该示例以使用 alloca 技术,从而避免使用 PHI 节点

@G = weak global i32 0   ; type of @G is i32*
@H = weak global i32 0   ; type of @H is i32*

define i32 @test(i1 %Condition) {
entry:
  %X = alloca i32           ; type of %X is i32*.
  br i1 %Condition, label %cond_true, label %cond_false

cond_true:
  %X.0 = load i32, i32* @G
  store i32 %X.0, i32* %X   ; Update X
  br label %cond_next

cond_false:
  %X.1 = load i32, i32* @H
  store i32 %X.1, i32* %X   ; Update X
  br label %cond_next

cond_next:
  %X.2 = load i32, i32* %X  ; Read X
  ret i32 %X.2
}

有了这个,我们发现了一种处理任意可变变量的方法,而无需创建 Phi 节点

  1. 每个可变变量都变成一个栈分配。

  2. 每次读取变量都会变成从栈的加载。

  3. 每次更新变量都会变成对栈的存储。

  4. 获取变量的地址只是直接使用栈地址。

虽然这个解决方案解决了我们眼前的难题,但它引入了另一个难题:对于非常简单和常见的操作,我们现在显然引入了大量的栈流量,这是一个主要的性能问题。幸运的是,LLVM 优化器有一个名为 “mem2reg” 的高度优化的 Pass 来处理这种情况,将像这样的 allocas 提升到 SSA 寄存器中,并根据需要插入 Phi 节点。例如,如果您通过该 Pass 运行此示例,您将得到

$ llvm-as < example.ll | opt -passes=mem2reg | llvm-dis
@G = weak global i32 0
@H = weak global i32 0

define i32 @test(i1 %Condition) {
entry:
  br i1 %Condition, label %cond_true, label %cond_false

cond_true:
  %X.0 = load i32, i32* @G
  br label %cond_next

cond_false:
  %X.1 = load i32, i32* @H
  br label %cond_next

cond_next:
  %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
  ret i32 %X.01
}

mem2reg Pass 实现了用于构建 SSA 形式的标准 “迭代支配边界” 算法,并具有许多优化,可以加速(非常常见的)退化情况。mem2reg 优化 Pass 是处理可变变量的答案,我们强烈建议您依赖它。请注意,mem2reg 仅在某些情况下适用于变量

  1. mem2reg 是 alloca 驱动的:它查找 allocas,如果可以处理它们,则提升它们。它不适用于全局变量或堆分配。

  2. mem2reg 仅在函数的入口块中查找 alloca 指令。位于入口块中保证了 alloca 只执行一次,这使得分析更简单。

  3. mem2reg 仅提升其用途是直接加载和存储的 allocas。如果栈对象的地址传递给函数,或者如果涉及任何有趣的指针运算,则不会提升 alloca。

  4. mem2reg 仅适用于 first class 值(例如指针、标量和向量)的 allocas,并且仅当分配的数组大小为 1(或 .ll 文件中缺少)时才适用。mem2reg 无法将结构体或数组提升为寄存器。请注意,“sroa” Pass 更强大,可以在许多情况下提升结构体、“联合”和数组。

对于大多数命令式语言来说,所有这些属性都很容易满足,我们将在下面的 Kaleidoscope 中对此进行说明。您可能要问的最后一个问题是:我应该为我的前端费心做这些无意义的事情吗?如果我直接进行 SSA 构建,避免使用 mem2reg 优化 Pass,岂不是更好?简而言之,我们强烈建议您使用此技术来构建 SSA 形式,除非有极其充分的理由不这样做。使用此技术是

  • 经过验证且经过良好测试:clang 使用此技术处理局部可变变量。因此,LLVM 最常见的客户端正在使用此技术来处理他们的大部分变量。您可以确信,bug 会很快被发现并尽早修复。

  • 极其快速:mem2reg 有许多特殊情况,使其在常见情况下以及完全通用情况下都很快。例如,它对仅在单个块中使用的变量、仅具有一个赋值点的变量、避免插入不需要的 phi 节点的良好启发式方法等具有快速路径。

  • 调试信息生成所需:LLVM 中的调试信息 依赖于公开变量的地址,以便可以将调试信息附加到它。这种技术与这种风格的调试信息非常自然地吻合。

如果其他方法都不行,这会使您的前端更容易启动和运行,并且非常容易实现。现在让我们用可变变量扩展 Kaleidoscope!

7.4. Kaleidoscope 中的可变变量

现在我们知道了我们要解决的问题类型,让我们看看这在我们的小型 Kaleidoscope 语言的上下文中是什么样的。我们将添加两个功能

  1. 使用 ‘=’ 运算符修改变量的能力。

  2. 定义新变量的能力。

虽然第一项才是本文的真正目的,但我们只有用于传入参数以及归纳变量的变量,并且重新定义这些变量只能做到这种程度:)。此外,无论您是否要修改它们,定义新变量的能力都是有用的。这是一个激励性的例子,展示了我们如何使用这些

# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;

# Recursive fib, we could do this before.
def fib(x)
  if (x < 3) then
    1
  else
    fib(x-1)+fib(x-2);

# Iterative fib.
def fibi(x)
  var a = 1, b = 1, c in
  (for i = 3, i < x in
     c = a + b :
     a = b :
     b = c) :
  b;

# Call it.
fibi(10);

为了修改变量,我们必须更改我们现有的变量以使用 “alloca 技巧”。一旦我们有了这个,我们将添加我们的新运算符,然后扩展 Kaleidoscope 以支持新的变量定义。

7.5. 调整现有变量以进行修改

Kaleidoscope 中的符号表在代码生成时由 ‘NamedValues’ 映射管理。此映射当前跟踪保存命名变量的双精度值的 LLVM “Value*”。为了支持修改,我们需要稍微更改一下,以便 NamedValues 保存相关变量的 *内存位置*。请注意,此更改是重构:它更改了代码的结构,但(本身)不会更改编译器的行为。所有这些更改都隔离在 Kaleidoscope 代码生成器中。

在 Kaleidoscope 开发的这一点上,它仅支持两个方面的变量:函数的传入参数和 ‘for’ 循环的归纳变量。为了保持一致性,除了其他用户定义的变量之外,我们还将允许修改这些变量。这意味着这些都需要内存位置。

为了开始 Kaleidoscope 的转换,我们将更改 NamedValues 映射,使其映射到 AllocaInst* 而不是 Value*。一旦我们这样做,C++ 编译器将告诉我们需要更新代码的哪些部分

static std::map<std::string, AllocaInst*> NamedValues;

此外,由于我们将需要创建这些 allocas,我们将使用一个辅助函数来确保 allocas 在函数的入口块中创建

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function.  This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
                                          StringRef VarName) {
  IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
                 TheFunction->getEntryBlock().begin());
  return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr,
                           VarName);
}

这段有趣的代码创建了一个 IRBuilder 对象,该对象指向入口块的第一个指令 (.begin())。然后,它使用预期的名称创建一个 alloca 并返回它。由于 Kaleidoscope 中的所有值都是双精度浮点数,因此无需传入要使用的类型。

有了这个,我们想要做的第一个功能更改属于变量引用。在我们的新方案中,变量驻留在栈上,因此为对它们的引用生成代码实际上需要产生从栈槽的加载

Value *VariableExprAST::codegen() {
  // Look this variable up in the function.
  AllocaInst *A = NamedValues[Name];
  if (!A)
    return LogErrorV("Unknown variable name");

  // Load the value.
  return Builder->CreateLoad(A->getAllocatedType(), A, Name.c_str());
}

如您所见,这非常简单明了。现在我们需要更新定义变量的事物以设置 alloca。我们将从 ForExprAST::codegen() 开始(有关未删节的代码,请参阅完整代码清单

Function *TheFunction = Builder->GetInsertBlock()->getParent();

// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
  return nullptr;

// Store the value into the alloca.
Builder->CreateStore(StartVal, Alloca);
...

// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
  return nullptr;

// Reload, increment, and restore the alloca.  This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder->CreateLoad(Alloca->getAllocatedType(), Alloca,
                                    VarName.c_str());
Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
Builder->CreateStore(NextVar, Alloca);
...

此代码与在我们允许可变变量之前的代码几乎相同。最大的区别在于我们不再需要构造 PHI 节点,并且我们使用 load/store 来根据需要访问变量。

为了支持可变的参数变量,我们还需要为它们创建 allocas。此代码也很简单

Function *FunctionAST::codegen() {
  ...
  Builder->SetInsertPoint(BB);

  // Record the function arguments in the NamedValues map.
  NamedValues.clear();
  for (auto &Arg : TheFunction->args()) {
    // Create an alloca for this variable.
    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

    // Store the initial value into the alloca.
    Builder->CreateStore(&Arg, Alloca);

    // Add arguments to variable symbol table.
    NamedValues[std::string(Arg.getName())] = Alloca;
  }

  if (Value *RetVal = Body->codegen()) {
    ...

对于每个参数,我们创建一个 alloca,将函数的输入值存储到 alloca 中,并将 alloca 注册为参数的内存位置。此方法在 FunctionAST::codegen() 设置函数的入口块后立即调用。

最后缺少的部分是添加 mem2reg Pass,这使我们能够再次获得良好的代码生成

// Promote allocas to registers.
TheFPM->addPass(PromotePass());
// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->addPass(InstCombinePass());
// Reassociate expressions.
TheFPM->addPass(ReassociatePass());
...

有趣的是,看看 mem2reg 优化运行之前和之后的代码是什么样的。例如,这是我们的递归 fib 函数的优化前/后代码。优化前

define double @fib(double %x) {
entry:
  %x1 = alloca double
  store double %x, double* %x1
  %x2 = load double, double* %x1
  %cmptmp = fcmp ult double %x2, 3.000000e+00
  %booltmp = uitofp i1 %cmptmp to double
  %ifcond = fcmp one double %booltmp, 0.000000e+00
  br i1 %ifcond, label %then, label %else

then:       ; preds = %entry
  br label %ifcont

else:       ; preds = %entry
  %x3 = load double, double* %x1
  %subtmp = fsub double %x3, 1.000000e+00
  %calltmp = call double @fib(double %subtmp)
  %x4 = load double, double* %x1
  %subtmp5 = fsub double %x4, 2.000000e+00
  %calltmp6 = call double @fib(double %subtmp5)
  %addtmp = fadd double %calltmp, %calltmp6
  br label %ifcont

ifcont:     ; preds = %else, %then
  %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
  ret double %iftmp
}

这里只有一个变量(x,输入参数),但您仍然可以看到我们使用的极其简单的代码生成策略。在入口块中,创建一个 alloca,并将初始输入值存储到其中。每次引用变量都会从栈中重新加载。此外,请注意我们没有修改 if/then/else 表达式,因此它仍然插入一个 PHI 节点。虽然我们可以为其创建一个 alloca,但实际上创建 PHI 节点更容易,因此我们仍然只创建 PHI。

这是 mem2reg Pass 运行后的代码

define double @fib(double %x) {
entry:
  %cmptmp = fcmp ult double %x, 3.000000e+00
  %booltmp = uitofp i1 %cmptmp to double
  %ifcond = fcmp one double %booltmp, 0.000000e+00
  br i1 %ifcond, label %then, label %else

then:
  br label %ifcont

else:
  %subtmp = fsub double %x, 1.000000e+00
  %calltmp = call double @fib(double %subtmp)
  %subtmp5 = fsub double %x, 2.000000e+00
  %calltmp6 = call double @fib(double %subtmp5)
  %addtmp = fadd double %calltmp, %calltmp6
  br label %ifcont

ifcont:     ; preds = %else, %then
  %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
  ret double %iftmp
}

对于 mem2reg 来说,这是一个微不足道的例子,因为没有变量的重新定义。展示这一点是为了缓解您对插入如此明显的低效率的担忧:)。

在其余优化器运行后,我们得到

define double @fib(double %x) {
entry:
  %cmptmp = fcmp ult double %x, 3.000000e+00
  %booltmp = uitofp i1 %cmptmp to double
  %ifcond = fcmp ueq double %booltmp, 0.000000e+00
  br i1 %ifcond, label %else, label %ifcont

else:
  %subtmp = fsub double %x, 1.000000e+00
  %calltmp = call double @fib(double %subtmp)
  %subtmp5 = fsub double %x, 2.000000e+00
  %calltmp6 = call double @fib(double %subtmp5)
  %addtmp = fadd double %calltmp, %calltmp6
  ret double %addtmp

ifcont:
  ret double 1.000000e+00
}

在这里,我们看到 simplifycfg Pass 决定将 return 指令克隆到 ‘else’ 块的末尾。这使其能够消除一些分支和 PHI 节点。

现在所有符号表引用都已更新为使用栈变量,我们将添加赋值运算符。

7.6. 新的赋值运算符

使用我们当前的框架,添加新的赋值运算符非常简单。我们将像解析任何其他二元运算符一样解析它,但在内部处理它(而不是允许用户定义它)。第一步是设置优先级

int main() {
  // Install standard binary operators.
  // 1 is lowest precedence.
  BinopPrecedence['='] = 2;
  BinopPrecedence['<'] = 10;
  BinopPrecedence['+'] = 20;
  BinopPrecedence['-'] = 20;

现在解析器知道二元运算符的优先级,它会处理所有解析和 AST 生成。我们只需要为赋值运算符实现代码生成。看起来像这样

Value *BinaryExprAST::codegen() {
  // Special case '=' because we don't want to emit the LHS as an expression.
  if (Op == '=') {
    // This assume we're building without RTTI because LLVM builds that way by
    // default. If you build LLVM with RTTI this can be changed to a
    // dynamic_cast for automatic error checking.
    VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS.get());
    if (!LHSE)
      return LogErrorV("destination of '=' must be a variable");

与其余的二元运算符不同,我们的赋值运算符不遵循 “emit LHS, emit RHS, do computation” 模型。因此,在处理其他二元运算符之前,它被作为特殊情况处理。另一个奇怪的事情是它要求 LHS 必须是变量。 иметь “(x+1) = expr” 是无效的 - 只允许像 “x = expr” 这样的内容。

  // Codegen the RHS.
  Value *Val = RHS->codegen();
  if (!Val)
    return nullptr;

  // Look up the name.
  Value *Variable = NamedValues[LHSE->getName()];
  if (!Variable)
    return LogErrorV("Unknown variable name");

  Builder->CreateStore(Val, Variable);
  return Val;
}
...

一旦我们有了变量,为赋值生成代码就很简单:我们发出赋值的 RHS,创建一个存储,并返回计算出的值。返回值允许链式赋值,例如 “X = (Y = Z)”。

现在我们有了赋值运算符,我们可以修改循环变量和参数。例如,我们现在可以运行这样的代码

# Function to print a double.
extern printd(x);

# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;

def test(x)
  printd(x) :
  x = 4 :
  printd(x);

test(123);

运行时,此示例打印 “123” 然后打印 “4”,表明我们确实修改了该值!好的,我们现在已经正式实现了我们的目标:在一般情况下,要使其工作,需要 SSA 构建。但是,为了真正有用,我们希望能够定义我们自己的局部变量,让我们接下来添加它!

7.7. 用户定义的局部变量

添加 var/in 就像我们对 Kaleidoscope 所做的任何其他扩展一样:我们扩展词法分析器、语法分析器、AST 和代码生成器。添加我们的新 ‘var/in’ 构造的第一步是扩展词法分析器。和以前一样,这非常简单,代码如下所示

enum Token {
  ...
  // var definition
  tok_var = -13
...
}
...
static int gettok() {
...
    if (IdentifierStr == "in")
      return tok_in;
    if (IdentifierStr == "binary")
      return tok_binary;
    if (IdentifierStr == "unary")
      return tok_unary;
    if (IdentifierStr == "var")
      return tok_var;
    return tok_identifier;
...

下一步是定义我们将要构造的 AST 节点。对于 var/in,它看起来像这样

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
  std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
  std::unique_ptr<ExprAST> Body;

public:
  VarExprAST(std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
             std::unique_ptr<ExprAST> Body)
    : VarNames(std::move(VarNames)), Body(std::move(Body)) {}

  Value *codegen() override;
};

var/in 允许一次定义名称列表,并且每个名称都可以选择具有初始化值。因此,我们将此信息捕获在 VarNames 向量中。此外,var/in 还有一个主体,该主体被允许访问 var/in 定义的变量。

有了这个,我们可以定义语法分析器片段。我们做的第一件事是将其添加为主要表达式

/// primary
///   ::= identifierexpr
///   ::= numberexpr
///   ::= parenexpr
///   ::= ifexpr
///   ::= forexpr
///   ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
  switch (CurTok) {
  default:
    return LogError("unknown token when expecting an expression");
  case tok_identifier:
    return ParseIdentifierExpr();
  case tok_number:
    return ParseNumberExpr();
  case '(':
    return ParseParenExpr();
  case tok_if:
    return ParseIfExpr();
  case tok_for:
    return ParseForExpr();
  case tok_var:
    return ParseVarExpr();
  }
}

接下来我们定义 ParseVarExpr

/// varexpr ::= 'var' identifier ('=' expression)?
//                    (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
  getNextToken();  // eat the var.

  std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

  // At least one variable name is required.
  if (CurTok != tok_identifier)
    return LogError("expected identifier after var");

此代码的第一部分将标识符/expr 对列表解析为本地 VarNames 向量。

while (true) {
  std::string Name = IdentifierStr;
  getNextToken();  // eat identifier.

  // Read the optional initializer.
  std::unique_ptr<ExprAST> Init;
  if (CurTok == '=') {
    getNextToken(); // eat the '='.

    Init = ParseExpression();
    if (!Init) return nullptr;
  }

  VarNames.push_back(std::make_pair(Name, std::move(Init)));

  // End of var list, exit loop.
  if (CurTok != ',') break;
  getNextToken(); // eat the ','.

  if (CurTok != tok_identifier)
    return LogError("expected identifier list after var");
}

解析完所有变量后,我们然后解析主体并创建 AST 节点

  // At this point, we have to have 'in'.
  if (CurTok != tok_in)
    return LogError("expected 'in' keyword after 'var'");
  getNextToken();  // eat 'in'.

  auto Body = ParseExpression();
  if (!Body)
    return nullptr;

  return std::make_unique<VarExprAST>(std::move(VarNames),
                                       std::move(Body));
}

现在我们可以解析和表示代码了,我们需要支持为其生成 LLVM IR。此代码以

Value *VarExprAST::codegen() {
  std::vector<AllocaInst *> OldBindings;

  Function *TheFunction = Builder->GetInsertBlock()->getParent();

  // Register all variables and emit their initializer.
  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
    const std::string &VarName = VarNames[i].first;
    ExprAST *Init = VarNames[i].second.get();

基本上,它循环遍历所有变量,一次安装一个变量。对于我们放入符号表中的每个变量,我们都会记住我们在 OldBindings 中替换的先前值。

  // Emit the initializer before adding the variable to scope, this prevents
  // the initializer from referencing the variable itself, and permits stuff
  // like this:
  //  var a = 1 in
  //    var a = a in ...   # refers to outer 'a'.
  Value *InitVal;
  if (Init) {
    InitVal = Init->codegen();
    if (!InitVal)
      return nullptr;
  } else { // If not specified, use 0.0.
    InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
  }

  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
  Builder->CreateStore(InitVal, Alloca);

  // Remember the old variable binding so that we can restore the binding when
  // we unrecurse.
  OldBindings.push_back(NamedValues[VarName]);

  // Remember this binding.
  NamedValues[VarName] = Alloca;
}

这里的注释比代码还多。基本思想是我们发出初始化器,创建 alloca,然后更新符号表以指向它。将所有变量安装到符号表中后,我们评估 var/in 表达式的主体

// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)
  return nullptr;

最后,在返回之前,我们恢复以前的变量绑定

  // Pop all our variables from scope.
  for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
    NamedValues[VarNames[i].first] = OldBindings[i];

  // Return the body computation.
  return BodyVal;
}

所有这一切的最终结果是,我们获得了正确范围的变量定义,并且我们甚至(微不足道地)允许修改它们:)。

有了这个,我们完成了我们着手要做的事情。我们从介绍中得到的漂亮的迭代 fib 示例可以正常编译和运行。mem2reg Pass 将我们所有的栈变量优化为 SSA 寄存器,在需要的地方插入 PHI 节点,并且我们的前端保持简单:任何地方都没有 “迭代支配边界” 计算。

7.8. 完整代码清单

这是我们的运行示例的完整代码清单,增强了可变变量和 var/in 支持。要构建此示例,请使用

# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
# Run
./toy

这是代码

#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include "llvm/Transforms/Utils/Mem2Reg.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::orc;

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
  tok_eof = -1,

  // commands
  tok_def = -2,
  tok_extern = -3,

  // primary
  tok_identifier = -4,
  tok_number = -5,

  // control
  tok_if = -6,
  tok_then = -7,
  tok_else = -8,
  tok_for = -9,
  tok_in = -10,

  // operators
  tok_binary = -11,
  tok_unary = -12,

  // var definition
  tok_var = -13
};

static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal;             // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
  static int LastChar = ' ';

  // Skip any whitespace.
  while (isspace(LastChar))
    LastChar = getchar();

  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    IdentifierStr = LastChar;
    while (isalnum((LastChar = getchar())))
      IdentifierStr += LastChar;

    if (IdentifierStr == "def")
      return tok_def;
    if (IdentifierStr == "extern")
      return tok_extern;
    if (IdentifierStr == "if")
      return tok_if;
    if (IdentifierStr == "then")
      return tok_then;
    if (IdentifierStr == "else")
      return tok_else;
    if (IdentifierStr == "for")
      return tok_for;
    if (IdentifierStr == "in")
      return tok_in;
    if (IdentifierStr == "binary")
      return tok_binary;
    if (IdentifierStr == "unary")
      return tok_unary;
    if (IdentifierStr == "var")
      return tok_var;
    return tok_identifier;
  }

  if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
    std::string NumStr;
    do {
      NumStr += LastChar;
      LastChar = getchar();
    } while (isdigit(LastChar) || LastChar == '.');

    NumVal = strtod(NumStr.c_str(), nullptr);
    return tok_number;
  }

  if (LastChar == '#') {
    // Comment until end of line.
    do
      LastChar = getchar();
    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

    if (LastChar != EOF)
      return gettok();
  }

  // Check for end of file.  Don't eat the EOF.
  if (LastChar == EOF)
    return tok_eof;

  // Otherwise, just return the character as its ascii value.
  int ThisChar = LastChar;
  LastChar = getchar();
  return ThisChar;
}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//

namespace {

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
  virtual ~ExprAST() = default;

  virtual Value *codegen() = 0;
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
  double Val;

public:
  NumberExprAST(double Val) : Val(Val) {}

  Value *codegen() override;
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
  std::string Name;

public:
  VariableExprAST(const std::string &Name) : Name(Name) {}

  Value *codegen() override;
  const std::string &getName() const { return Name; }
};

/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
  char Opcode;
  std::unique_ptr<ExprAST> Operand;

public:
  UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
      : Opcode(Opcode), Operand(std::move(Operand)) {}

  Value *codegen() override;
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
  char Op;
  std::unique_ptr<ExprAST> LHS, RHS;

public:
  BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
                std::unique_ptr<ExprAST> RHS)
      : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}

  Value *codegen() override;
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
  std::string Callee;
  std::vector<std::unique_ptr<ExprAST>> Args;

public:
  CallExprAST(const std::string &Callee,
              std::vector<std::unique_ptr<ExprAST>> Args)
      : Callee(Callee), Args(std::move(Args)) {}

  Value *codegen() override;
};

/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
  std::unique_ptr<ExprAST> Cond, Then, Else;

public:
  IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
            std::unique_ptr<ExprAST> Else)
      : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}

  Value *codegen() override;
};

/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
  std::string VarName;
  std::unique_ptr<ExprAST> Start, End, Step, Body;

public:
  ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
             std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
             std::unique_ptr<ExprAST> Body)
      : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
        Step(std::move(Step)), Body(std::move(Body)) {}

  Value *codegen() override;
};

/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
  std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
  std::unique_ptr<ExprAST> Body;

public:
  VarExprAST(
      std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
      std::unique_ptr<ExprAST> Body)
      : VarNames(std::move(VarNames)), Body(std::move(Body)) {}

  Value *codegen() override;
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
  std::string Name;
  std::vector<std::string> Args;
  bool IsOperator;
  unsigned Precedence; // Precedence if a binary op.

public:
  PrototypeAST(const std::string &Name, std::vector<std::string> Args,
               bool IsOperator = false, unsigned Prec = 0)
      : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
        Precedence(Prec) {}

  Function *codegen();
  const std::string &getName() const { return Name; }

  bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
  bool isBinaryOp() const { return IsOperator && Args.size() == 2; }

  char getOperatorName() const {
    assert(isUnaryOp() || isBinaryOp());
    return Name[Name.size() - 1];
  }

  unsigned getBinaryPrecedence() const { return Precedence; }
};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
  std::unique_ptr<PrototypeAST> Proto;
  std::unique_ptr<ExprAST> Body;

public:
  FunctionAST(std::unique_ptr<PrototypeAST> Proto,
              std::unique_ptr<ExprAST> Body)
      : Proto(std::move(Proto)), Body(std::move(Body)) {}

  Function *codegen();
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
/// token the parser is looking at.  getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
  if (!isascii(CurTok))
    return -1;

  // Make sure it's a declared binop.
  int TokPrec = BinopPrecedence[CurTok];
  if (TokPrec <= 0)
    return -1;
  return TokPrec;
}

/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
  fprintf(stderr, "Error: %s\n", Str);
  return nullptr;
}

std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
  LogError(Str);
  return nullptr;
}

static std::unique_ptr<ExprAST> ParseExpression();

/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
  auto Result = std::make_unique<NumberExprAST>(NumVal);
  getNextToken(); // consume the number
  return std::move(Result);
}

/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
  getNextToken(); // eat (.
  auto V = ParseExpression();
  if (!V)
    return nullptr;

  if (CurTok != ')')
    return LogError("expected ')'");
  getNextToken(); // eat ).
  return V;
}

/// identifierexpr
///   ::= identifier
///   ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
  std::string IdName = IdentifierStr;

  getNextToken(); // eat identifier.

  if (CurTok != '(') // Simple variable ref.
    return std::make_unique<VariableExprAST>(IdName);

  // Call.
  getNextToken(); // eat (
  std::vector<std::unique_ptr<ExprAST>> Args;
  if (CurTok != ')') {
    while (true) {
      if (auto Arg = ParseExpression())
        Args.push_back(std::move(Arg));
      else
        return nullptr;

      if (CurTok == ')')
        break;

      if (CurTok != ',')
        return LogError("Expected ')' or ',' in argument list");
      getNextToken();
    }
  }

  // Eat the ')'.
  getNextToken();

  return std::make_unique<CallExprAST>(IdName, std::move(Args));
}

/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
  getNextToken(); // eat the if.

  // condition.
  auto Cond = ParseExpression();
  if (!Cond)
    return nullptr;

  if (CurTok != tok_then)
    return LogError("expected then");
  getNextToken(); // eat the then

  auto Then = ParseExpression();
  if (!Then)
    return nullptr;

  if (CurTok != tok_else)
    return LogError("expected else");

  getNextToken();

  auto Else = ParseExpression();
  if (!Else)
    return nullptr;

  return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
                                      std::move(Else));
}

/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
  getNextToken(); // eat the for.

  if (CurTok != tok_identifier)
    return LogError("expected identifier after for");

  std::string IdName = IdentifierStr;
  getNextToken(); // eat identifier.

  if (CurTok != '=')
    return LogError("expected '=' after for");
  getNextToken(); // eat '='.

  auto Start = ParseExpression();
  if (!Start)
    return nullptr;
  if (CurTok != ',')
    return LogError("expected ',' after for start value");
  getNextToken();

  auto End = ParseExpression();
  if (!End)
    return nullptr;

  // The step value is optional.
  std::unique_ptr<ExprAST> Step;
  if (CurTok == ',') {
    getNextToken();
    Step = ParseExpression();
    if (!Step)
      return nullptr;
  }

  if (CurTok != tok_in)
    return LogError("expected 'in' after for");
  getNextToken(); // eat 'in'.

  auto Body = ParseExpression();
  if (!Body)
    return nullptr;

  return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
                                       std::move(Step), std::move(Body));
}

/// varexpr ::= 'var' identifier ('=' expression)?
//                    (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
  getNextToken(); // eat the var.

  std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;

  // At least one variable name is required.
  if (CurTok != tok_identifier)
    return LogError("expected identifier after var");

  while (true) {
    std::string Name = IdentifierStr;
    getNextToken(); // eat identifier.

    // Read the optional initializer.
    std::unique_ptr<ExprAST> Init = nullptr;
    if (CurTok == '=') {
      getNextToken(); // eat the '='.

      Init = ParseExpression();
      if (!Init)
        return nullptr;
    }

    VarNames.push_back(std::make_pair(Name, std::move(Init)));

    // End of var list, exit loop.
    if (CurTok != ',')
      break;
    getNextToken(); // eat the ','.

    if (CurTok != tok_identifier)
      return LogError("expected identifier list after var");
  }

  // At this point, we have to have 'in'.
  if (CurTok != tok_in)
    return LogError("expected 'in' keyword after 'var'");
  getNextToken(); // eat 'in'.

  auto Body = ParseExpression();
  if (!Body)
    return nullptr;

  return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}

/// primary
///   ::= identifierexpr
///   ::= numberexpr
///   ::= parenexpr
///   ::= ifexpr
///   ::= forexpr
///   ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
  switch (CurTok) {
  default:
    return LogError("unknown token when expecting an expression");
  case tok_identifier:
    return ParseIdentifierExpr();
  case tok_number:
    return ParseNumberExpr();
  case '(':
    return ParseParenExpr();
  case tok_if:
    return ParseIfExpr();
  case tok_for:
    return ParseForExpr();
  case tok_var:
    return ParseVarExpr();
  }
}

/// unary
///   ::= primary
///   ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
  // If the current token is not an operator, it must be a primary expr.
  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    return ParsePrimary();

  // If this is a unary operator, read it.
  int Opc = CurTok;
  getNextToken();
  if (auto Operand = ParseUnary())
    return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
  return nullptr;
}

/// binoprhs
///   ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
                                              std::unique_ptr<ExprAST> LHS) {
  // If this is a binop, find its precedence.
  while (true) {
    int TokPrec = GetTokPrecedence();

    // If this is a binop that binds at least as tightly as the current binop,
    // consume it, otherwise we are done.
    if (TokPrec < ExprPrec)
      return LHS;

    // Okay, we know this is a binop.
    int BinOp = CurTok;
    getNextToken(); // eat binop

    // Parse the unary expression after the binary operator.
    auto RHS = ParseUnary();
    if (!RHS)
      return nullptr;

    // If BinOp binds less tightly with RHS than the operator after RHS, let
    // the pending operator take RHS as its LHS.
    int NextPrec = GetTokPrecedence();
    if (TokPrec < NextPrec) {
      RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
      if (!RHS)
        return nullptr;
    }

    // Merge LHS/RHS.
    LHS =
        std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
  }
}

/// expression
///   ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
  auto LHS = ParseUnary();
  if (!LHS)
    return nullptr;

  return ParseBinOpRHS(0, std::move(LHS));
}

/// prototype
///   ::= id '(' id* ')'
///   ::= binary LETTER number? (id, id)
///   ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
  std::string FnName;

  unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
  unsigned BinaryPrecedence = 30;

  switch (CurTok) {
  default:
    return LogErrorP("Expected function name in prototype");
  case tok_identifier:
    FnName = IdentifierStr;
    Kind = 0;
    getNextToken();
    break;
  case tok_unary:
    getNextToken();
    if (!isascii(CurTok))
      return LogErrorP("Expected unary operator");
    FnName = "unary";
    FnName += (char)CurTok;
    Kind = 1;
    getNextToken();
    break;
  case tok_binary:
    getNextToken();
    if (!isascii(CurTok))
      return LogErrorP("Expected binary operator");
    FnName = "binary";
    FnName += (char)CurTok;
    Kind = 2;
    getNextToken();

    // Read the precedence if present.
    if (CurTok == tok_number) {
      if (NumVal < 1 || NumVal > 100)
        return LogErrorP("Invalid precedence: must be 1..100");
      BinaryPrecedence = (unsigned)NumVal;
      getNextToken();
    }
    break;
  }

  if (CurTok != '(')
    return LogErrorP("Expected '(' in prototype");

  std::vector<std::string> ArgNames;
  while (getNextToken() == tok_identifier)
    ArgNames.push_back(IdentifierStr);
  if (CurTok != ')')
    return LogErrorP("Expected ')' in prototype");

  // success.
  getNextToken(); // eat ')'.

  // Verify right number of names for operator.
  if (Kind && ArgNames.size() != Kind)
    return LogErrorP("Invalid number of operands for operator");

  return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
                                         BinaryPrecedence);
}

/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
  getNextToken(); // eat def.
  auto Proto = ParsePrototype();
  if (!Proto)
    return nullptr;

  if (auto E = ParseExpression())
    return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
  return nullptr;
}

/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
  if (auto E = ParseExpression()) {
    // Make an anonymous proto.
    auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
                                                 std::vector<std::string>());
    return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
  }
  return nullptr;
}

/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
  getNextToken(); // eat extern.
  return ParsePrototype();
}

//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//

static std::unique_ptr<LLVMContext> TheContext;
static std::unique_ptr<Module> TheModule;
static std::unique_ptr<IRBuilder<>> Builder;
static std::map<std::string, AllocaInst *> NamedValues;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::unique_ptr<FunctionPassManager> TheFPM;
static std::unique_ptr<LoopAnalysisManager> TheLAM;
static std::unique_ptr<FunctionAnalysisManager> TheFAM;
static std::unique_ptr<CGSCCAnalysisManager> TheCGAM;
static std::unique_ptr<ModuleAnalysisManager> TheMAM;
static std::unique_ptr<PassInstrumentationCallbacks> ThePIC;
static std::unique_ptr<StandardInstrumentations> TheSI;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
static ExitOnError ExitOnErr;

Value *LogErrorV(const char *Str) {
  LogError(Str);
  return nullptr;
}

Function *getFunction(std::string Name) {
  // First, see if the function has already been added to the current module.
  if (auto *F = TheModule->getFunction(Name))
    return F;

  // If not, check whether we can codegen the declaration from some existing
  // prototype.
  auto FI = FunctionProtos.find(Name);
  if (FI != FunctionProtos.end())
    return FI->second->codegen();

  // If no existing prototype exists, return null.
  return nullptr;
}

/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function.  This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
                                          StringRef VarName) {
  IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
                   TheFunction->getEntryBlock().begin());
  return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
}

Value *NumberExprAST::codegen() {
  return ConstantFP::get(*TheContext, APFloat(Val));
}

Value *VariableExprAST::codegen() {
  // Look this variable up in the function.
  AllocaInst *A = NamedValues[Name];
  if (!A)
    return LogErrorV("Unknown variable name");

  // Load the value.
  return Builder->CreateLoad(A->getAllocatedType(), A, Name.c_str());
}

Value *UnaryExprAST::codegen() {
  Value *OperandV = Operand->codegen();
  if (!OperandV)
    return nullptr;

  Function *F = getFunction(std::string("unary") + Opcode);
  if (!F)
    return LogErrorV("Unknown unary operator");

  return Builder->CreateCall(F, OperandV, "unop");
}

Value *BinaryExprAST::codegen() {
  // Special case '=' because we don't want to emit the LHS as an expression.
  if (Op == '=') {
    // Assignment requires the LHS to be an identifier.
    // This assume we're building without RTTI because LLVM builds that way by
    // default.  If you build LLVM with RTTI this can be changed to a
    // dynamic_cast for automatic error checking.
    VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
    if (!LHSE)
      return LogErrorV("destination of '=' must be a variable");
    // Codegen the RHS.
    Value *Val = RHS->codegen();
    if (!Val)
      return nullptr;

    // Look up the name.
    Value *Variable = NamedValues[LHSE->getName()];
    if (!Variable)
      return LogErrorV("Unknown variable name");

    Builder->CreateStore(Val, Variable);
    return Val;
  }

  Value *L = LHS->codegen();
  Value *R = RHS->codegen();
  if (!L || !R)
    return nullptr;

  switch (Op) {
  case '+':
    return Builder->CreateFAdd(L, R, "addtmp");
  case '-':
    return Builder->CreateFSub(L, R, "subtmp");
  case '*':
    return Builder->CreateFMul(L, R, "multmp");
  case '<':
    L = Builder->CreateFCmpULT(L, R, "cmptmp");
    // Convert bool 0/1 to double 0.0 or 1.0
    return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
  default:
    break;
  }

  // If it wasn't a builtin binary operator, it must be a user defined one. Emit
  // a call to it.
  Function *F = getFunction(std::string("binary") + Op);
  assert(F && "binary operator not found!");

  Value *Ops[] = {L, R};
  return Builder->CreateCall(F, Ops, "binop");
}

Value *CallExprAST::codegen() {
  // Look up the name in the global module table.
  Function *CalleeF = getFunction(Callee);
  if (!CalleeF)
    return LogErrorV("Unknown function referenced");

  // If argument mismatch error.
  if (CalleeF->arg_size() != Args.size())
    return LogErrorV("Incorrect # arguments passed");

  std::vector<Value *> ArgsV;
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    ArgsV.push_back(Args[i]->codegen());
    if (!ArgsV.back())
      return nullptr;
  }

  return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
}

Value *IfExprAST::codegen() {
  Value *CondV = Cond->codegen();
  if (!CondV)
    return nullptr;

  // Convert condition to a bool by comparing non-equal to 0.0.
  CondV = Builder->CreateFCmpONE(
      CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");

  Function *TheFunction = Builder->GetInsertBlock()->getParent();

  // Create blocks for the then and else cases.  Insert the 'then' block at the
  // end of the function.
  BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
  BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
  BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");

  Builder->CreateCondBr(CondV, ThenBB, ElseBB);

  // Emit then value.
  Builder->SetInsertPoint(ThenBB);

  Value *ThenV = Then->codegen();
  if (!ThenV)
    return nullptr;

  Builder->CreateBr(MergeBB);
  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
  ThenBB = Builder->GetInsertBlock();

  // Emit else block.
  TheFunction->insert(TheFunction->end(), ElseBB);
  Builder->SetInsertPoint(ElseBB);

  Value *ElseV = Else->codegen();
  if (!ElseV)
    return nullptr;

  Builder->CreateBr(MergeBB);
  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
  ElseBB = Builder->GetInsertBlock();

  // Emit merge block.
  TheFunction->insert(TheFunction->end(), MergeBB);
  Builder->SetInsertPoint(MergeBB);
  PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");

  PN->addIncoming(ThenV, ThenBB);
  PN->addIncoming(ElseV, ElseBB);
  return PN;
}

// Output for-loop as:
//   var = alloca double
//   ...
//   start = startexpr
//   store start -> var
//   goto loop
// loop:
//   ...
//   bodyexpr
//   ...
// loopend:
//   step = stepexpr
//   endcond = endexpr
//
//   curvar = load var
//   nextvar = curvar + step
//   store nextvar -> var
//   br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
  Function *TheFunction = Builder->GetInsertBlock()->getParent();

  // Create an alloca for the variable in the entry block.
  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);

  // Emit the start code first, without 'variable' in scope.
  Value *StartVal = Start->codegen();
  if (!StartVal)
    return nullptr;

  // Store the value into the alloca.
  Builder->CreateStore(StartVal, Alloca);

  // Make the new basic block for the loop header, inserting after current
  // block.
  BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);

  // Insert an explicit fall through from the current block to the LoopBB.
  Builder->CreateBr(LoopBB);

  // Start insertion in LoopBB.
  Builder->SetInsertPoint(LoopBB);

  // Within the loop, the variable is defined equal to the PHI node.  If it
  // shadows an existing variable, we have to restore it, so save it now.
  AllocaInst *OldVal = NamedValues[VarName];
  NamedValues[VarName] = Alloca;

  // Emit the body of the loop.  This, like any other expr, can change the
  // current BB.  Note that we ignore the value computed by the body, but don't
  // allow an error.
  if (!Body->codegen())
    return nullptr;

  // Emit the step value.
  Value *StepVal = nullptr;
  if (Step) {
    StepVal = Step->codegen();
    if (!StepVal)
      return nullptr;
  } else {
    // If not specified, use 1.0.
    StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
  }

  // Compute the end condition.
  Value *EndCond = End->codegen();
  if (!EndCond)
    return nullptr;

  // Reload, increment, and restore the alloca.  This handles the case where
  // the body of the loop mutates the variable.
  Value *CurVar =
      Builder->CreateLoad(Alloca->getAllocatedType(), Alloca, VarName.c_str());
  Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
  Builder->CreateStore(NextVar, Alloca);

  // Convert condition to a bool by comparing non-equal to 0.0.
  EndCond = Builder->CreateFCmpONE(
      EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");

  // Create the "after loop" block and insert it.
  BasicBlock *AfterBB =
      BasicBlock::Create(*TheContext, "afterloop", TheFunction);

  // Insert the conditional branch into the end of LoopEndBB.
  Builder->CreateCondBr(EndCond, LoopBB, AfterBB);

  // Any new code will be inserted in AfterBB.
  Builder->SetInsertPoint(AfterBB);

  // Restore the unshadowed variable.
  if (OldVal)
    NamedValues[VarName] = OldVal;
  else
    NamedValues.erase(VarName);

  // for expr always returns 0.0.
  return Constant::getNullValue(Type::getDoubleTy(*TheContext));
}

Value *VarExprAST::codegen() {
  std::vector<AllocaInst *> OldBindings;

  Function *TheFunction = Builder->GetInsertBlock()->getParent();

  // Register all variables and emit their initializer.
  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
    const std::string &VarName = VarNames[i].first;
    ExprAST *Init = VarNames[i].second.get();

    // Emit the initializer before adding the variable to scope, this prevents
    // the initializer from referencing the variable itself, and permits stuff
    // like this:
    //  var a = 1 in
    //    var a = a in ...   # refers to outer 'a'.
    Value *InitVal;
    if (Init) {
      InitVal = Init->codegen();
      if (!InitVal)
        return nullptr;
    } else { // If not specified, use 0.0.
      InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
    }

    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
    Builder->CreateStore(InitVal, Alloca);

    // Remember the old variable binding so that we can restore the binding when
    // we unrecurse.
    OldBindings.push_back(NamedValues[VarName]);

    // Remember this binding.
    NamedValues[VarName] = Alloca;
  }

  // Codegen the body, now that all vars are in scope.
  Value *BodyVal = Body->codegen();
  if (!BodyVal)
    return nullptr;

  // Pop all our variables from scope.
  for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
    NamedValues[VarNames[i].first] = OldBindings[i];

  // Return the body computation.
  return BodyVal;
}

Function *PrototypeAST::codegen() {
  // Make the function type:  double(double,double) etc.
  std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
  FunctionType *FT =
      FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);

  Function *F =
      Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());

  // Set names for all arguments.
  unsigned Idx = 0;
  for (auto &Arg : F->args())
    Arg.setName(Args[Idx++]);

  return F;
}

Function *FunctionAST::codegen() {
  // Transfer ownership of the prototype to the FunctionProtos map, but keep a
  // reference to it for use below.
  auto &P = *Proto;
  FunctionProtos[Proto->getName()] = std::move(Proto);
  Function *TheFunction = getFunction(P.getName());
  if (!TheFunction)
    return nullptr;

  // If this is an operator, install it.
  if (P.isBinaryOp())
    BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();

  // Create a new basic block to start insertion into.
  BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
  Builder->SetInsertPoint(BB);

  // Record the function arguments in the NamedValues map.
  NamedValues.clear();
  for (auto &Arg : TheFunction->args()) {
    // Create an alloca for this variable.
    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());

    // Store the initial value into the alloca.
    Builder->CreateStore(&Arg, Alloca);

    // Add arguments to variable symbol table.
    NamedValues[std::string(Arg.getName())] = Alloca;
  }

  if (Value *RetVal = Body->codegen()) {
    // Finish off the function.
    Builder->CreateRet(RetVal);

    // Validate the generated code, checking for consistency.
    verifyFunction(*TheFunction);

    // Run the optimizer on the function.
    TheFPM->run(*TheFunction, *TheFAM);

    return TheFunction;
  }

  // Error reading body, remove function.
  TheFunction->eraseFromParent();

  if (P.isBinaryOp())
    BinopPrecedence.erase(P.getOperatorName());
  return nullptr;
}

//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//

static void InitializeModuleAndManagers() {
  // Open a new context and module.
  TheContext = std::make_unique<LLVMContext>();
  TheModule = std::make_unique<Module>("KaleidoscopeJIT", *TheContext);
  TheModule->setDataLayout(TheJIT->getDataLayout());

  // Create a new builder for the module.
  Builder = std::make_unique<IRBuilder<>>(*TheContext);

  // Create new pass and analysis managers.
  TheFPM = std::make_unique<FunctionPassManager>();
  TheLAM = std::make_unique<LoopAnalysisManager>();
  TheFAM = std::make_unique<FunctionAnalysisManager>();
  TheCGAM = std::make_unique<CGSCCAnalysisManager>();
  TheMAM = std::make_unique<ModuleAnalysisManager>();
  ThePIC = std::make_unique<PassInstrumentationCallbacks>();
  TheSI = std::make_unique<StandardInstrumentations>(*TheContext,
                                                     /*DebugLogging*/ true);
  TheSI->registerCallbacks(*ThePIC, TheMAM.get());

  // Add transform passes.
  // Promote allocas to registers.
  TheFPM->addPass(PromotePass());
  // Do simple "peephole" optimizations and bit-twiddling optzns.
  TheFPM->addPass(InstCombinePass());
  // Reassociate expressions.
  TheFPM->addPass(ReassociatePass());
  // Eliminate Common SubExpressions.
  TheFPM->addPass(GVNPass());
  // Simplify the control flow graph (deleting unreachable blocks, etc).
  TheFPM->addPass(SimplifyCFGPass());

  // Register analysis passes used in these transform passes.
  PassBuilder PB;
  PB.registerModuleAnalyses(*TheMAM);
  PB.registerFunctionAnalyses(*TheFAM);
  PB.crossRegisterProxies(*TheLAM, *TheFAM, *TheCGAM, *TheMAM);
}

static void HandleDefinition() {
  if (auto FnAST = ParseDefinition()) {
    if (auto *FnIR = FnAST->codegen()) {
      fprintf(stderr, "Read function definition:");
      FnIR->print(errs());
      fprintf(stderr, "\n");
      ExitOnErr(TheJIT->addModule(
          ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
      InitializeModuleAndManagers();
    }
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleExtern() {
  if (auto ProtoAST = ParseExtern()) {
    if (auto *FnIR = ProtoAST->codegen()) {
      fprintf(stderr, "Read extern: ");
      FnIR->print(errs());
      fprintf(stderr, "\n");
      FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
    }
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleTopLevelExpression() {
  // Evaluate a top-level expression into an anonymous function.
  if (auto FnAST = ParseTopLevelExpr()) {
    if (FnAST->codegen()) {
      // Create a ResourceTracker to track JIT'd memory allocated to our
      // anonymous expression -- that way we can free it after executing.
      auto RT = TheJIT->getMainJITDylib().createResourceTracker();

      auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
      ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
      InitializeModuleAndManagers();

      // Search the JIT for the __anon_expr symbol.
      auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));

      // Get the symbol's address and cast it to the right type (takes no
      // arguments, returns a double) so we can call it as a native function.
      double (*FP)() = ExprSymbol.toPtr<double (*)()>();
      fprintf(stderr, "Evaluated to %f\n", FP());

      // Delete the anonymous expression module from the JIT.
      ExitOnErr(RT->remove());
    }
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
  while (true) {
    fprintf(stderr, "ready> ");
    switch (CurTok) {
    case tok_eof:
      return;
    case ';': // ignore top-level semicolons.
      getNextToken();
      break;
    case tok_def:
      HandleDefinition();
      break;
    case tok_extern:
      HandleExtern();
      break;
    default:
      HandleTopLevelExpression();
      break;
    }
  }
}

//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//

#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif

/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
  fputc((char)X, stderr);
  return 0;
}

/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
  fprintf(stderr, "%f\n", X);
  return 0;
}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
  InitializeNativeTarget();
  InitializeNativeTargetAsmPrinter();
  InitializeNativeTargetAsmParser();

  // Install standard binary operators.
  // 1 is lowest precedence.
  BinopPrecedence['='] = 2;
  BinopPrecedence['<'] = 10;
  BinopPrecedence['+'] = 20;
  BinopPrecedence['-'] = 20;
  BinopPrecedence['*'] = 40; // highest.

  // Prime the first token.
  fprintf(stderr, "ready> ");
  getNextToken();

  TheJIT = ExitOnErr(KaleidoscopeJIT::Create());

  InitializeModuleAndManagers();

  // Run the main "interpreter loop" now.
  MainLoop();

  return 0;
}

下一步:编译为目标代码