5. 万花筒:扩展语言:控制流¶
5.1. 第 5 章 简介¶
欢迎来到“使用 LLVM 实现语言”教程的第 5 章。第 1-4 部分描述了简单万花筒语言的实现,并包含了生成 LLVM IR 的支持,然后是优化和 JIT 编译器。不幸的是,如前所述,万花筒语言几乎毫无用处:除了调用和返回之外,它没有其他控制流。这意味着您无法在代码中使用条件分支,这极大地限制了它的功能。在本集“构建该编译器”中,我们将扩展万花筒语言,使其具有 if/then/else 表达式以及一个简单的 ‘for’ 循环。
5.2. If/Then/Else¶
扩展万花筒语言以支持 if/then/else 非常简单。它基本上需要为词法分析器、语法分析器、AST 和 LLVM 代码发射器添加对这个“新”概念的支持。这个例子很好,因为它展示了随着时间的推移“扩展”语言是多么容易,可以根据发现的新想法逐步扩展它。
在我们开始讨论“如何”添加此扩展之前,让我们先讨论一下我们“想要”什么。基本的想法是我们希望能够编写如下内容
def fib(x)
if x < 3 then
1
else
fib(x-1)+fib(x-2);
在万花筒语言中,每个结构都是一个表达式:没有语句。因此,if/then/else 表达式需要像其他任何表达式一样返回一个值。由于我们使用的是一种主要的功能形式,我们将让它评估其条件,然后根据条件如何解析返回 ‘then’ 或 ‘else’ 的值。这与 C 语言中的“?:”表达式非常相似。
if/then/else 表达式的语义是它将条件评估为一个布尔等值:0.0 被认为是假,其他所有值都被认为是真。如果条件为真,则评估第一个子表达式并返回,如果条件为假,则评估第二个子表达式并返回。由于万花筒语言允许副作用,因此必须确定此行为。
现在我们知道了我们“想要”什么,让我们将其分解成其组成部分。
5.2.1. If/Then/Else 的词法分析扩展¶
词法分析扩展很简单。首先,我们为相关的令牌添加新的枚举值
// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
有了这些之后,我们在词法分析器中识别新的关键字。这非常简单
...
if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
if (IdentifierStr == "if")
return tok_if;
if (IdentifierStr == "then")
return tok_then;
if (IdentifierStr == "else")
return tok_else;
return tok_identifier;
5.2.2. If/Then/Else 的 AST 扩展¶
为了表示新的表达式,我们为它添加了一个新的 AST 节点
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
std::unique_ptr<ExprAST> Cond, Then, Else;
public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *codegen() override;
};
AST 节点只是指向各个子表达式的指针。
5.2.3. If/Then/Else 的语法分析扩展¶
现在我们有了来自词法分析器的相关令牌,并且有了要构建的 AST 节点,我们的语法分析逻辑相对简单。首先,我们定义一个新的语法分析函数
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
if (CurTok != tok_then)
return LogError("expected then");
getNextToken(); // eat the then
auto Then = ParseExpression();
if (!Then)
return nullptr;
if (CurTok != tok_else)
return LogError("expected else");
getNextToken();
auto Else = ParseExpression();
if (!Else)
return nullptr;
return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
接下来,我们将它连接为一个主表达式
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
case tok_if:
return ParseIfExpr();
}
}
5.2.4. If/Then/Else 的 LLVM IR¶
现在我们已经完成了语法分析和 AST 的构建,最后一步是添加 LLVM 代码生成支持。这是 if/then/else 例子中最有趣的部分,因为这里开始引入新概念。上面所有的代码在前面的章节中都有详细的描述。
为了说明我们想要生成的代码,让我们看一个简单的例子。考虑
extern foo();
extern bar();
def baz(x) if x then foo() else bar();
如果您禁用优化,您很快将从万花筒语言获得如下代码
declare double @foo()
declare double @bar()
define double @baz(double %x) {
entry:
%ifcond = fcmp one double %x, 0.000000e+00
br i1 %ifcond, label %then, label %else
then: ; preds = %entry
%calltmp = call double @foo()
br label %ifcont
else: ; preds = %entry
%calltmp1 = call double @bar()
br label %ifcont
ifcont: ; preds = %else, %then
%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
ret double %iftmp
}
要可视化控制流图,您可以使用 LLVM ‘opt’ 工具的一个巧妙功能。如果您将此 LLVM IR 放入“t.ll”中并运行“llvm-as < t.ll | opt -passes=view-cfg
”,将弹出一个窗口,您将看到此图
另一种获得此结果的方法是调用“F->viewCFG()
”或“F->viewCFGOnly()
”(其中 F 是一个“Function*
”),方法是在代码中插入实际调用并重新编译,或者在调试器中调用这些函数。LLVM 具有许多用于可视化各种图的不错功能。
回到生成的代码,它相当简单:入口块评估条件表达式(此处为“x”),并使用“fcmp one
”指令将结果与 0.0 进行比较(‘one’ 是“有序且不等于”)。根据此表达式的结果,代码跳转到“then”或“else”块,其中包含真/假情况的表达式。
一旦 then/else 块执行完毕,它们都会分支回 ‘ifcont’ 块以执行 if/then/else 之后发生的代码。在本例中,唯一剩下的事情就是返回到函数的调用方。然后问题就变成了:代码如何知道要返回哪个表达式?
这个问题的答案涉及一个重要的 SSA 操作:Phi 操作。如果您不熟悉 SSA,维基百科文章 是一个很好的介绍,并且在您喜欢的搜索引擎上可以找到其他各种介绍。简而言之,“执行”Phi 操作需要“记住”控制来自哪个块。Phi 操作采用对应于输入控制块的值。在本例中,如果控制来自“then”块,则它获取“calltmp”的值。如果控制来自“else”块,则它获取“calltmp1”的值。
此时,您可能开始考虑“哦,不!这意味着我的简单而优雅的前端将不得不开始生成 SSA 形式才能使用 LLVM!”。幸运的是,情况并非如此,除非有非常好的理由,否则我们强烈建议您不要在前端实现 SSA 构造算法。在实践中,在为您的普通命令式编程语言编写的代码中,有两种类型的值可能会需要 Phi 节点
涉及用户变量的代码:
x = 1; x = x + 1;
AST 结构中隐含的值,例如本例中的 Phi 节点。
在本教程的第 7 章(“可变变量”)中,我们将深入讨论 #1。现在,请相信我,您不需要 SSA 构造来处理这种情况。对于 #2,您可以选择使用我们将在 #1 中描述的技术,或者如果方便,您可以直接插入 Phi 节点。在本例中,生成 Phi 节点非常容易,因此我们选择直接执行。
好的,关于动机和概述就说这么多,让我们开始生成代码吧!
5.2.5. If/Then/Else 的代码生成¶
为了为此生成代码,我们为 IfExprAST
实现 codegen
方法
Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;
// Convert condition to a bool by comparing non-equal to 0.0.
CondV = Builder->CreateFCmpONE(
CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
此代码很简单,类似于我们之前看到的代码。我们发出条件表达式的表达式,然后将该值与零进行比较以获取一个 1 位(布尔)值。
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB =
BasicBlock::Create(*TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
Builder->CreateCondBr(CondV, ThenBB, ElseBB);
此代码创建与 if/then/else 语句相关的基本块,并直接对应于上例中的块。第一行获取当前正在构建的 Function 对象。它通过询问构建器当前的 BasicBlock,并询问该块的“父级”(它当前嵌入到的函数)来获取它。
获得该对象后,它会创建三个块。请注意,它将“TheFunction”传递到“then”块的构造函数中。这会导致构造函数自动将新块插入到指定函数的末尾。创建了其他两个块,但尚未插入到函数中。
创建块后,我们可以发出在它们之间进行选择的条件分支。请注意,创建新块不会隐式地影响 IRBuilder,因此它仍在插入条件所在的块中。另请注意,它正在创建到“then”块和“else”块的分支,即使“else”块尚未插入到函数中。这都没有问题:这是 LLVM 支持前向引用的标准方法。
// Emit then value.
Builder->SetInsertPoint(ThenBB);
Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder->GetInsertBlock();
插入条件分支后,我们将构建器移动到开始插入“then”块中。严格来说,此调用将插入点移动到指定块的末尾。但是,由于“then”块为空,因此它也从块的开头开始插入。 :)
一旦设置了插入点,我们就递归地从 AST 中生成“then”表达式的代码。为了完成“then”块,我们创建一个无条件分支到合并块。LLVM IR的一个有趣(且非常重要)方面是,它要求所有基本块都以“终止”控制流指令(如 return 或 branch)结尾。这意味着所有控制流,包括贯穿执行,都必须在 LLVM IR 中明确表示。如果您违反此规则,验证器将发出错误。
这里的最后一行非常微妙,但非常重要。基本问题是,当我们在合并块中创建 Phi 节点时,我们需要设置指示 Phi 如何工作的块/值对。重要的是,Phi 节点期望对 CFG 中每个前驱块都有一个条目。那么,为什么我们在刚刚将其设置为 ThenBB(上面 5 行)时,却获得了当前块呢?问题在于,“Then”表达式实际上可能会更改构建器正在发出的块,例如,如果它包含嵌套的“if/then/else”表达式。因为递归调用codegen()
可能会任意更改当前块的概念,所以我们必须获取用于设置 Phi 节点的代码的最新值。
// Emit else block.
TheFunction->insert(TheFunction->end(), ElseBB);
Builder->SetInsertPoint(ElseBB);
Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;
Builder->CreateBr(MergeBB);
// codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder->GetInsertBlock();
‘else’块的代码生成与‘then’块的代码生成基本相同。唯一的区别是第一行,它将‘else’块添加到函数中。回想一下,之前创建了‘else’块,但没有添加到函数中。现在‘then’和‘else’块都已发出,我们可以完成合并代码。
// Emit merge block.
TheFunction->insert(TheFunction->end(), MergeBB);
Builder->SetInsertPoint(MergeBB);
PHINode *PN =
Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
这里的前两行现在很熟悉:第一行将“merge”块添加到 Function 对象(它之前是浮动的,就像上面的 else 块一样)。第二行更改插入点,以便新创建的代码将进入“merge”块。完成此操作后,我们需要创建 PHI 节点并为 PHI 设置块/值对。
最后,CodeGen 函数将 phi 节点作为 if/then/else 表达式计算出的值返回。在上面的示例中,此返回值将馈送到顶级函数的代码,该代码将创建 return 指令。
总体而言,我们现在能够在 Kaleidoscope 中执行条件代码。通过此扩展,Kaleidoscope 成为一种相当完整的语言,可以计算各种数值函数。接下来,我们将添加另一个来自非函数式语言的常用表达式……
5.3. ‘for’循环表达式¶
现在我们知道如何向语言添加基本的控制流结构,我们有了添加更强大功能的工具。让我们添加一些更强大的东西,一个‘for’表达式。
extern putchard(char);
def printstar(n)
for i = 1, i < n, 1.0 in
putchard(42); # ascii 42 = '*'
# print 100 '*' characters
printstar(100);
此表达式定义了一个新变量(在本例中为“i”),该变量从起始值迭代,当条件(在本例中为“i < n”)为真时,以可选的步长值(在本例中为“1.0”)递增。如果省略步长值,则默认为 1.0。当循环为真时,它执行其主体表达式。因为我们没有更好的返回值,所以我们只定义循环始终返回 0.0。将来当我们有可变变量时,它会变得更有用。
和以前一样,让我们讨论一下我们需要对 Kaleidoscope 进行哪些更改才能支持它。
5.3.1. ‘for’循环的词法分析器扩展¶
词法分析器扩展与 if/then/else 的扩展类似。
... in enum Token ...
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10
... in gettok ...
if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
if (IdentifierStr == "if")
return tok_if;
if (IdentifierStr == "then")
return tok_then;
if (IdentifierStr == "else")
return tok_else;
if (IdentifierStr == "for")
return tok_for;
if (IdentifierStr == "in")
return tok_in;
return tok_identifier;
5.3.2. ‘for’循环的 AST 扩展¶
AST 节点同样简单。它基本上归结为捕获节点中的变量名和组成表达式。
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)
: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}
Value *codegen() override;
};
5.3.3. ‘for’循环的解析器扩展¶
解析器代码也相当标准。这里唯一有趣的事情是处理可选的步长值。解析器代码通过检查第二个逗号是否存在来处理它。如果不是,则将 AST 节点中的步长值设置为 null。
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return LogError("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return LogError("expected '=' after for");
getNextToken(); // eat '='.
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return LogError("expected ',' after for start value");
getNextToken();
auto End = ParseExpression();
if (!End)
return nullptr;
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)
return nullptr;
}
if (CurTok != tok_in)
return LogError("expected 'in' after for");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return std::make_unique<ForExprAST>(IdName, std::move(Start),
std::move(End), std::move(Step),
std::move(Body));
}
我们再次将其作为主要表达式挂钩。
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
case tok_if:
return ParseIfExpr();
case tok_for:
return ParseForExpr();
}
}
5.3.4. ‘for’循环的 LLVM IR¶
现在我们进入重点:我们希望为此生成 LLVM IR。使用上面的简单示例,我们得到此 LLVM IR(请注意,此转储是在禁用优化以提高清晰度的情况下生成的)。
declare double @putchard(double)
define double @printstar(double %n) {
entry:
; initial value = 1.0 (inlined into phi)
br label %loop
loop: ; preds = %loop, %entry
%i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
; body
%calltmp = call double @putchard(double 4.200000e+01)
; increment
%nextvar = fadd double %i, 1.000000e+00
; termination test
%cmptmp = fcmp ult double %i, %n
%booltmp = uitofp i1 %cmptmp to double
%loopcond = fcmp one double %booltmp, 0.000000e+00
br i1 %loopcond, label %loop, label %afterloop
afterloop: ; preds = %loop
; loop always returns 0.0
ret double 0.000000e+00
}
此循环包含我们之前看到的所有相同结构:phi 节点、多个表达式和一些基本块。让我们看看它们是如何组合在一起的。
5.3.5. ‘for’循环的代码生成¶
代码生成的第一部分非常简单:我们只需输出循环值的起始表达式。
Value *ForExprAST::codegen() {
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;
解决了这个问题后,下一步是设置循环体开始的 LLVM 基本块。在上面的例子中,整个循环体是一个块,但请记住,主体代码本身可能包含多个块(例如,如果它包含 if/then/else 或 for/in 表达式)。
// Make the new basic block for the loop header, inserting after current
// block.
Function *TheFunction = Builder->GetInsertBlock()->getParent();
BasicBlock *PreheaderBB = Builder->GetInsertBlock();
BasicBlock *LoopBB =
BasicBlock::Create(*TheContext, "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
Builder->CreateBr(LoopBB);
此代码类似于我们在 if/then/else 中看到的代码。因为我们需要它来创建 Phi 节点,所以我们记住贯穿到循环的块。获得该块后,我们创建实际开始循环的块,并为这两个块之间的贯穿创建无条件分支。
// Start insertion in LoopBB.
Builder->SetInsertPoint(LoopBB);
// Start the PHI node with an entry for Start.
PHINode *Variable = Builder->CreatePHI(Type::getDoubleTy(*TheContext),
2, VarName);
Variable->addIncoming(StartVal, PreheaderBB);
现在循环的“预头”已设置好,我们切换到为循环体发出代码。首先,我们移动插入点并为循环索引变量创建 PHI 节点。由于我们已经知道起始值的传入值,因此我们将其添加到 Phi 节点。请注意,Phi 最终将为后边获得第二个值,但我们还无法设置它(因为它不存在!)。
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
Value *OldVal = NamedValues[VarName];
NamedValues[VarName] = Variable;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;
现在代码开始变得更有趣了。我们的‘for’循环向符号表中引入了新的变量。这意味着我们的符号表现在可以包含函数参数或循环变量。为了处理这一点,在我们为循环体生成代码之前,我们将循环变量添加为其名称的当前值。请注意,外部作用域中可能存在同名的变量。很容易将其设为错误(如果 VarName 已经存在条目,则发出错误并返回 null),但我们选择允许变量的阴影覆盖。为了正确处理这种情况,我们在OldVal
中记住我们可能正在隐藏的值(如果不存在隐藏的变量,则为 null)。
将循环变量设置到符号表后,代码递归地生成主体代码。这允许主体使用循环变量:对它的任何引用都将自然地在符号表中找到它。
// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)
return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
}
Value *NextVar = Builder->CreateFAdd(Variable, StepVal, "nextvar");
现在主体已发出,我们通过添加步长值(如果不存在,则为 1.0)来计算迭代变量的下一个值。‘NextVar
’将是循环变量在循环下一次迭代中的值。
// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;
// Convert condition to a bool by comparing non-equal to 0.0.
EndCond = Builder->CreateFCmpONE(
EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
最后,我们评估循环的退出值,以确定循环是否应该退出。这反映了 if/then/else 语句的条件评估。
// Create the "after loop" block and insert it.
BasicBlock *LoopEndBB = Builder->GetInsertBlock();
BasicBlock *AfterBB =
BasicBlock::Create(*TheContext, "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
Builder->SetInsertPoint(AfterBB);
循环体的代码完成后,我们只需要完成它的控制流。此代码记住结束块(用于 phi 节点),然后创建循环退出块 (“afterloop”)。根据退出条件的值,它创建一个条件分支,在再次执行循环和退出循环之间进行选择。任何将来的代码都在“afterloop”块中发出,因此它将插入位置设置为该块。
// Add a new entry to the PHI node for the backedge.
Variable->addIncoming(NextVar, LoopEndBB);
// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;
else
NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(*TheContext));
}
最后的代码处理各种清理工作:现在我们有了“NextVar”值,我们可以将传入值添加到循环 PHI 节点中。之后,我们从符号表中删除循环变量,以便它在 for 循环之后不再在范围内。最后,for 循环的代码生成始终返回 0.0,这就是我们从ForExprAST::codegen()
返回的内容。
至此,我们完成了本教程中“向 Kaleidoscope 添加控制流”一章的内容。在本章中,我们添加了两个控制流结构,并使用它们来说明 LLVM IR 的一些对于前端实现者来说很重要的方面。在我们传奇故事的下一章中,我们将变得更加疯狂,并向我们可怜的无辜语言添加用户定义的操作符。
5.4. 完整代码清单¶
这是我们正在运行的示例的完整代码清单,增强了 if/then/else 和 for 表达式。要构建此示例,请使用
# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
# Run
./toy
以下是代码
#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>
using namespace llvm;
using namespace llvm::orc;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2,
tok_extern = -3,
// primary
tok_identifier = -4,
tok_number = -5,
// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10
};
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;
if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
if (IdentifierStr == "if")
return tok_if;
if (IdentifierStr == "then")
return tok_then;
if (IdentifierStr == "else")
return tok_else;
if (IdentifierStr == "for")
return tok_for;
if (IdentifierStr == "in")
return tok_in;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do
LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
virtual ~ExprAST() = default;
virtual Value *codegen() = 0;
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
public:
VariableExprAST(const std::string &Name) : Name(Name) {}
Value *codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;
public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;
public:
CallExprAST(const std::string &Callee,
std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}
Value *codegen() override;
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
std::unique_ptr<ExprAST> Cond, Then, Else;
public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *codegen() override;
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)
: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}
Value *codegen() override;
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args)
: Name(Name), Args(std::move(Args)) {}
Function *codegen();
const std::string &getName() const { return Name; }
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *codegen();
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;
return TokPrec;
}
/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;
}
std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;
}
static std::unique_ptr<ExprAST> ParseExpression();
/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = std::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;
if (CurTok != ')')
return LogError("expected ')'");
getNextToken(); // eat ).
return V;
}
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return std::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {
if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));
else
return nullptr;
if (CurTok == ')')
break;
if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return std::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
if (CurTok != tok_then)
return LogError("expected then");
getNextToken(); // eat the then
auto Then = ParseExpression();
if (!Then)
return nullptr;
if (CurTok != tok_else)
return LogError("expected else");
getNextToken();
auto Else = ParseExpression();
if (!Else)
return nullptr;
return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return LogError("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return LogError("expected '=' after for");
getNextToken(); // eat '='.
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return LogError("expected ',' after for start value");
getNextToken();
auto End = ParseExpression();
if (!End)
return nullptr;
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)
return nullptr;
}
if (CurTok != tok_in)
return LogError("expected 'in' after for");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
case tok_if:
return ParseIfExpr();
case tok_for:
return ParseForExpr();
}
}
/// binoprhs
/// ::= ('+' primary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
// Parse the primary expression after the binary operator.
auto RHS = ParsePrimary();
if (!RHS)
return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)
return nullptr;
}
// Merge LHS/RHS.
LHS =
std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}
/// expression
/// ::= primary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParsePrimary();
if (!LHS)
return nullptr;
return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return LogErrorP("Expected function name in prototype");
std::string FnName = IdentifierStr;
getNextToken();
if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
return std::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}
/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;
if (auto E = ParseExpression())
return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
return nullptr;
}
/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
std::vector<std::string>());
return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
return nullptr;
}
/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
static std::unique_ptr<LLVMContext> TheContext;
static std::unique_ptr<Module> TheModule;
static std::unique_ptr<IRBuilder<>> Builder;
static std::map<std::string, Value *> NamedValues;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::unique_ptr<FunctionPassManager> TheFPM;
static std::unique_ptr<LoopAnalysisManager> TheLAM;
static std::unique_ptr<FunctionAnalysisManager> TheFAM;
static std::unique_ptr<CGSCCAnalysisManager> TheCGAM;
static std::unique_ptr<ModuleAnalysisManager> TheMAM;
static std::unique_ptr<PassInstrumentationCallbacks> ThePIC;
static std::unique_ptr<StandardInstrumentations> TheSI;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
static ExitOnError ExitOnErr;
Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;
}
Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;
// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();
// If no existing prototype exists, return null.
return nullptr;
}
Value *NumberExprAST::codegen() {
return ConstantFP::get(*TheContext, APFloat(Val));
}
Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");
return V;
}
Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;
switch (Op) {
case '+':
return Builder->CreateFAdd(L, R, "addtmp");
case '-':
return Builder->CreateFSub(L, R, "subtmp");
case '*':
return Builder->CreateFMul(L, R, "multmp");
case '<':
L = Builder->CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
default:
return LogErrorV("invalid binary operator");
}
}
Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())
return nullptr;
}
return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;
// Convert condition to a bool by comparing non-equal to 0.0.
CondV = Builder->CreateFCmpONE(
CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
Builder->CreateCondBr(CondV, ThenBB, ElseBB);
// Emit then value.
Builder->SetInsertPoint(ThenBB);
Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder->GetInsertBlock();
// Emit else block.
TheFunction->insert(TheFunction->end(), ElseBB);
Builder->SetInsertPoint(ElseBB);
Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder->GetInsertBlock();
// Emit merge block.
TheFunction->insert(TheFunction->end(), MergeBB);
Builder->SetInsertPoint(MergeBB);
PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
// Output for-loop as:
// ...
// start = startexpr
// goto loop
// loop:
// variable = phi [start, loopheader], [nextvariable, loopend]
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// nextvariable = variable + step
// endcond = endexpr
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;
// Make the new basic block for the loop header, inserting after current
// block.
Function *TheFunction = Builder->GetInsertBlock()->getParent();
BasicBlock *PreheaderBB = Builder->GetInsertBlock();
BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
Builder->CreateBr(LoopBB);
// Start insertion in LoopBB.
Builder->SetInsertPoint(LoopBB);
// Start the PHI node with an entry for Start.
PHINode *Variable =
Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, VarName);
Variable->addIncoming(StartVal, PreheaderBB);
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
Value *OldVal = NamedValues[VarName];
NamedValues[VarName] = Variable;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;
// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)
return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
}
Value *NextVar = Builder->CreateFAdd(Variable, StepVal, "nextvar");
// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;
// Convert condition to a bool by comparing non-equal to 0.0.
EndCond = Builder->CreateFCmpONE(
EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
// Create the "after loop" block and insert it.
BasicBlock *LoopEndBB = Builder->GetInsertBlock();
BasicBlock *AfterBB =
BasicBlock::Create(*TheContext, "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
Builder->SetInsertPoint(AfterBB);
// Add a new entry to the PHI node for the backedge.
Variable->addIncoming(NextVar, LoopEndBB);
// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;
else
NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(*TheContext));
}
Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
FunctionType *FT =
FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);
return F;
}
Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
Builder->SetInsertPoint(BB);
// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
NamedValues[std::string(Arg.getName())] = &Arg;
if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder->CreateRet(RetVal);
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
// Run the optimizer on the function.
TheFPM->run(*TheFunction, *TheFAM);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
return nullptr;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static void InitializeModuleAndManagers() {
// Open a new context and module.
TheContext = std::make_unique<LLVMContext>();
TheModule = std::make_unique<Module>("KaleidoscopeJIT", *TheContext);
TheModule->setDataLayout(TheJIT->getDataLayout());
// Create a new builder for the module.
Builder = std::make_unique<IRBuilder<>>(*TheContext);
// Create new pass and analysis managers.
TheFPM = std::make_unique<FunctionPassManager>();
TheLAM = std::make_unique<LoopAnalysisManager>();
TheFAM = std::make_unique<FunctionAnalysisManager>();
TheCGAM = std::make_unique<CGSCCAnalysisManager>();
TheMAM = std::make_unique<ModuleAnalysisManager>();
ThePIC = std::make_unique<PassInstrumentationCallbacks>();
TheSI = std::make_unique<StandardInstrumentations>(*TheContext,
/*DebugLogging*/ true);
TheSI->registerCallbacks(*ThePIC, TheMAM.get());
// Add transform passes.
// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->addPass(InstCombinePass());
// Reassociate expressions.
TheFPM->addPass(ReassociatePass());
// Eliminate Common SubExpressions.
TheFPM->addPass(GVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
TheFPM->addPass(SimplifyCFGPass());
// Register analysis passes used in these transform passes.
PassBuilder PB;
PB.registerModuleAnalyses(*TheMAM);
PB.registerFunctionAnalyses(*TheFAM);
PB.crossRegisterProxies(*TheLAM, *TheFAM, *TheCGAM, *TheMAM);
}
static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->print(errs());
fprintf(stderr, "\n");
ExitOnErr(TheJIT->addModule(
ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
InitializeModuleAndManagers();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->print(errs());
fprintf(stderr, "\n");
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (FnAST->codegen()) {
// Create a ResourceTracker to track JIT'd memory allocated to our
// anonymous expression -- that way we can free it after executing.
auto RT = TheJIT->getMainJITDylib().createResourceTracker();
auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
InitializeModuleAndManagers();
// Search the JIT for the __anon_expr symbol.
auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));
// Get the symbol's address and cast it to the right type (takes no
// arguments, returns a double) so we can call it as a native function.
double (*FP)() = ExprSymbol.getAddress().toPtr<double (*)()>();
fprintf(stderr, "Evaluated to %f\n", FP());
// Delete the anonymous expression module from the JIT.
ExitOnErr(RT->remove());
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;
case ';': // ignore top-level semicolons.
getNextToken();
break;
case tok_def:
HandleDefinition();
break;
case tok_extern:
HandleExtern();
break;
default:
HandleTopLevelExpression();
break;
}
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif
/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
fputc((char)X, stderr);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();
TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
InitializeModuleAndManagers();
// Run the main "interpreter loop" now.
MainLoop();
return 0;
}