Architecture for a

Next-Generation GCC

Chris Lattner Vikram Adve

sabr e@ondot . org vadve@s. ui uc. edu

http://11vm cs. ul uc. edu/

The First Annual GCC Developers' Summit
May 26, 2003

GCC Optimizer Problems:

= Scope of optimization is very limited:

Most transformations work on functions...
« ...and one is even limited to extended basic blocks

No whole-program analyses or optimization!
= e.g. alias analysis must be extremely conservative

= Tree & RTL are bad for mid-level opt’zns:

Tree Is language-specific and too high-level
RTL is target-specific and too low-level

Chris Lattner —sabr e@ondot . or g

New Optimization Architecture:

« Transparent link-time optimization:
Completely compatible with user makefiles

= Enables sophisticated interprocedural
analyses (IPA) and optimizations (IPO):
Increase the scope of analysis and optimization
= A new representation for optimization:
Typed, SSA-based, three-address code
Source language and target-independent

Chris Lattner —sabr e@ondot . or g

Example Applications for GCC:

=« Fix inlining heuristics:
Allows whole program, bottom-up inlining
Cost metric IS more accurate than for trees

«lmproved alias analysis:
Dramatically improved precision
Code motion, redundancy elimination gains

=Work around low-level ABI problems:
Tailor linkage of functions with IP information

Chris Lattner —sabr e@ondot . or g

'_
Talk QOutline:

« High-Level Compiler Architecture
=How does the proposed GCC work?

= Code Representation Detalls
«=\What does the representation look like?

= LLVM: An Implementation
= |mplementation status and experiences

«Conclusion

Chris Lattner —sabr e@ondot . or g

Traditional GCC QOrganization:

= Compile: source to target assembly
= Assemble: target assembly to object file

& LInk: combine object files into an executable

Compile Time Link Time

Source | Assembly | Object | Executable

2 N . l
—» ccl —» as Files |

| |
— cclplus —» as d —

| | |

2] I
—» ... —» as Libs J |

I

Chris Lattner —sabr e@ondot . or g

Proposed GCC Architecture:

= Split the existing compiler in half:
Parsing & semantic analysis at compile time
Code generation at link-time
Optimization at compile-time and link-time

Compile Time Link Time
Source | Tree | New Representation ' RTL | Assembly
GCC Mid-level . |Whole-Program| GCC
— Frontend | Optimize — ¥ Link Optimize Backend
i i / e
_,| GCC | Mid-level | L
Frontend | Optimize : as P ld —» Executable
|

Chris Lattner —sabr e@ondot . or g

=
Why Link-Time?

=« Fits Into normal compile & link model:
User makefiles do not have to change
Enabled if compiling at - &4

= Missing code severely limits IPA & IPO:

Must make conservative assumptions:
= An unknown callee can do just about anything

At link-time, most of the program is available
for the first time!

Chris Lattner —sabr e@ondot . or g

Making Link-Time Opt Feasible:

=Many commercial compilers support

lIN

t

K-time optimization (intel, SGI, HP, etc...):
‘hese export an AST-level representation,

nen perform all optimization at link-time

= Our proposal:
Optimize as much at compile-time as possible
Perform aggressive IPA/IPO at link-time
Allows mixed object files in native & IR format

Chris Lattner —sabr e@ondot . or g

No major GCC changes:

= New GCC components:
New expander from Tree to IR
New expander from IR to RTL
Must extend the compiler driver

=« EXIsting code path can be retained:

When disabled, does not effect performance

When - @2 Is enabled, use new mid-level
optimizations a function- (or unit-) at-a-time

Chris Lattner —sabr e@ondot . or g

'__
Talk QOutline:

=« High-Level Compiler Architecture
=How does the proposed GCC work?

= Code Representation Detalls
«=\What does the representation look like?

= LLVM: An Implementation
= |mplementation status and experiences

«Conclusion

Chris Lattner —sabr e@ondot . or g

Code Representation Properties:

« Low-Level, SSA based, and “RISC-like":

SSA-based = efficient, sparse, global opt’zns
Orthogonal, as few operations as possible
Simple, well defined semantics (documented)
Simplify development of optimizations:
= Development & maintenance is very costly!
= Concrete details come from LLVM:
More detalls about LLVM come later in talk

Chris Lattner —sabr e@ondot . or g

"
Code Example:
0ode =Xample.

 '%)air = type { int, float }

struct pair { declare void %Bun(fl oat*, %

int X; float Y,

H
void Sum(float *, struct pair *P);

int 9%rocess(float* %A 0, int
entry:
U = all oca Ypair

0 = 0 ir* O
int Process(float *A int N % np. O getel enentptr %pair* 9%, |long 0, ubyte O

! 0 = 0 ir* 9
struct pair P={0,0}: % np. 1 getel ementptr %air* 9%°, long 0, ubyte 1

(i =0 i <N ++H) { —pp store float 0.0, float* %np.1
Sun A &;3). ’ %np.3 = setlt int 0, YN

IAT"'?I } br bool % np.3, |abel 9% oop,
return| P. X; | oop: .
} % .1 = phi int [0, %ntry]
%A.1 = phi float* [%A O,

[Y%A 2,
call void %un(fl oat?* s Ypai r* UP)
%A. 2 = getelenentptr float* %A. 1, long 1
% .2 = add int %.1, 1

Typed pointer arithmetic for | -, 0 o w1 o
expliCit access to memory br bool % np.4, |abel % oop, |abel %eturn

return:
%np.5 = load int* %np.0
ret int %np.5

} Chris Lattner —sabr e@ondot . or g

Strongly-Typed Representation;

= Key challenge:
Support high-level analyses & transformations
... on a low-level representation!

= Types provide this high-level info:

Enables aggressive analyses and opt’zns:

= €.¢g. automatic pool allocation, safety checking,
data structure analysis, etc...

Every computed value has a type
= Type system iIs language-neutral!

Chris Lattner —sabr e@ondot . or g

Type System Detalls:

= 3Slmple lang. independent type system:
Primitives: void, bool, float, ushort, opaque, ...
Derived: pointer, array, structure, function
No high-level types!

= 3Source language types are lowered.:
eg. T& = T*
€.0J. class T: S{int XX } = { S int }

= Type system can be “broken” with casts

Chris Lattner —sabr e@ondot . or g

Full Featured Language:

« Should contain all info about the code:
functions, globals, inline asm, etc...

Should be possible to serialize and
deserialize a program at any time

= Language has binary and text formats:
Both directly correspond to in-memory IR
Text Is for humans, binary is faster to parse
Makes debugging and understanding easier!

Chris Lattner —sabr e@ondot . or g

'_
Talk QOutline:

=« High-Level Compiler Architecture
=How does the proposed GCC work?

= Code Representation Detalls
«=\What does the representation look like?

«LLVM: An Implementation
= |lmplementation status and experiences

«Conclusion

Chris Lattner —sabr e@ondot . or g

LLVM: Low-Level Virtual Machine

= A research compiler infrastructure:
Provides a solid foundation for research

In use both inside and outside of UIUC:

= Compilers, architecture, & dynamic compilation
= Tw0 advanced compilers courses

= Development Progress:
2.5 years old, ~130K lines of C++ code

First public release is coming soon:
=« 1.0 release this summer, prereleases via email

Chris Lattner —sabr e@ondot . or g

LLVM Implementation Status:

= Most of this proposal is implemented:
Tree & LLVM expander (for C and C++)
Linker, optimizer, textual & bytecode formats
Mid-level optimizer is sequence of 22 passes

«All sorts of analyses & optimizations:
Scalar: ADCE, SCCP, register promotion, ...

CFG: dominators, natural loops, profiling, ...

|IP: alias analysis, automatic pool allocation,
Interprocedural mod/ref, safety verification...

Chris Lattner —sabr e@ondot . or g

Other LLVM Infrastructure:

= Direct execution of LLVM bytecode:
A portable interpreter, a Just-In-Time compliler
= Several custom (non-GCC) backends:
Sparc-V9, 1A-32, C backend
= The LLVM “Pass Manager”:

Declarative system for tracking analysis and
optimizer pass dependencies

Assists building tools out of a series of passes

Chris Lattner —sabr e@ondot . or g

LLVM Development Tools:

=« Invariant checking:
Automatic IR memory leak detection

A verifier pass which checks for consistency
= Definitions dominate all uses, etc...

= Bugpoint - automatic test-case reducer:

Automatically reduces test cases to a small
example which still causes a problem

Can debug miscompilations or pass crashes

Chris Lattner —sabr e@ondot . or g

LLVM Is extremely fast:

= End-to-end performance isn’t great yet:
Not yet integrated into GCC proper

= But transformations are very fast:

Some example numbers from the paper:
Source we -1 GCC LLVM Pass Times # LLVM Pass xforms
Filename LOC || CSE 1 IC GER | GCSE | Sum IC GER | GCSE
combine.c 11103 0.708 A431s | .027s 141s 599s || 16182 141 2734
exXpr.c 10747 0.528 141s | .009s 072s 2228 6540 41 2870
cse.c R779 0.508 A87s | .012s 061s 260s || 10925 59 1894
reloadl.c 7117 0.37s .058s | .008s 034s .100s 5735 86 1830
c-decl.c 6968 0.428 022s | .005s 031s .058s 3299 3 2221
insn-recog.c 6957 0.34s 082s | .004s 090s 1768 5238 0 654
loop.c 6648 0.33s .013s | .001s 003s .017s 1671 7 264
c-typeck.c 6604 0.468 028s | .005s 026s .059s 4481 14 1993

Chris Lattner —sabr e@ondot . or g

Conclusion:

&« Contributions:

A realistic architecture for an aggressive link-
time optimizer

A representation for efficient and powerful
analyses and transformations

=LLVM iIs available...
... and we appreciate your feedback!

http://1lvmcs. uiuc. edu

Chris Lattner —sabr e@ondot . or g

