9. 万花筒:添加调试信息¶
9.1. 第 9 章 导言¶
欢迎来到“使用 LLVM 实现语言”教程的第 9 章。在第 1 章到第 8 章中,我们构建了一个相当不错的包含函数和变量的小型编程语言。但是,如果出现错误,如何调试程序呢?
源代码级调试使用格式化数据,帮助调试器将二进制文件和机器状态转换回程序员编写的源代码。在 LLVM 中,我们通常使用称为 DWARF 的格式。DWARF 是一种紧凑的编码,表示类型、源位置和变量位置。
本章的简要概述是,我们将介绍为支持调试信息需要添加到编程语言中的各种内容,以及如何将其转换为 DWARF。
警告:目前我们无法通过 JIT 进行调试,因此我们需要将程序编译成一个小巧且独立的程序。作为其中的一部分,我们将对语言的运行方式和程序的编译方式进行一些修改。这意味着我们将拥有一个源文件,其中包含用万花筒编写的简单程序,而不是交互式 JIT。它确实涉及一个限制,即为了减少必要的更改次数,我们一次只能有一个“顶级”命令。
这是我们将要编译的示例程序
def fib(x)
if x < 3 then
1
else
fib(x-1)+fib(x-2);
fib(10)
9.2. 为什么这是一个难题?¶
调试信息对于几个不同的原因来说都是一个难题——主要集中在优化代码上。首先,优化使得保持源位置变得更加困难。在 LLVM IR 中,我们保留每个 IR 级指令的原始源位置。优化传递应该保留新创建指令的源位置,但合并的指令只能保留单个位置——这可能导致在单步执行优化程序时跳来跳去。其次,优化可以以各种方式移动变量,这些变量要么被优化掉,要么与其他变量共享内存,要么难以跟踪。出于本教程的目的,我们将避免优化(正如您将在下一组补丁中看到的那样)。
9.3. 提前编译模式¶
为了仅突出显示将调试信息添加到源语言的各个方面,而无需担心 JIT 调试的复杂性,我们将对万花筒进行一些更改,以支持将前端发出的 IR 编译成一个简单的独立程序,您可以执行、调试并查看结果。
首先,我们将包含顶级语句的匿名函数设为我们的“main”
- auto Proto = std::make_unique<PrototypeAST>("", std::vector<std::string>());
+ auto Proto = std::make_unique<PrototypeAST>("main", std::vector<std::string>());
只需简单地为其命名。
然后,我们将删除命令行代码(无论它存在于何处)
@@ -1129,7 +1129,6 @@ static void HandleTopLevelExpression() {
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
- fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;
@@ -1184,7 +1183,6 @@ int main() {
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
- fprintf(stderr, "ready> ");
getNextToken();
最后,我们将禁用所有优化传递和 JIT,以便在我们完成解析和代码生成后,唯一发生的事情是 LLVM IR 将输出到标准错误
@@ -1108,17 +1108,8 @@ static void HandleExtern() {
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
- if (auto *FnIR = FnAST->codegen()) {
- // We're just doing this to make sure it executes.
- TheExecutionEngine->finalizeObject();
- // JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine->getPointerToFunction(FnIR);
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)FPtr;
- // Ignore the return value for this.
- (void)FP;
+ if (!FnAST->codegen()) {
+ fprintf(stderr, "Error generating code for top level expr");
}
} else {
// Skip token for error recovery.
@@ -1439,11 +1459,11 @@ int main() {
// target lays out data structures.
TheModule->setDataLayout(TheExecutionEngine->getDataLayout());
OurFPM.add(new DataLayoutPass());
+#if 0
OurFPM.add(createBasicAliasAnalysisPass());
// Promote allocas to registers.
OurFPM.add(createPromoteMemoryToRegisterPass());
@@ -1218,7 +1210,7 @@ int main() {
OurFPM.add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
OurFPM.add(createCFGSimplificationPass());
-
+ #endif
OurFPM.doInitialization();
// Set the global so the code gen can use this.
这组相对较小的更改使我们能够通过以下命令行将万花筒语言片段编译成可执行程序
Kaleidoscope-Ch9 < fib.ks | & clang -x ir -
这将在当前工作目录中生成一个 a.out/a.exe。
9.4. 编译单元¶
DWARF 中代码段的顶级容器是编译单元。它包含单个翻译单元(阅读:一个源代码文件)的类型和函数数据。因此,我们需要做的第一件事是为我们的 fib.ks 文件构建一个。
9.5. DWARF 发射设置¶
类似于 IRBuilder
类,我们有一个 DIBuilder 类,它有助于构建 LLVM IR 文件的调试元数据。它与 IRBuilder
和 LLVM IR 一一对应,但名称更友好。使用它确实需要您比使用 IRBuilder
和 Instruction
名称更熟悉 DWARF 术语,但如果您通读有关 元数据格式 的常规文档,它应该会更清楚一些。我们将使用此类来构建我们所有的 IR 级描述。它的构造需要一个模块,因此我们需要在构造模块后立即构造它。我们将其保留为全局静态变量,以便于使用。
接下来,我们将创建一个小型容器来缓存一些常用的数据。第一个将是我们的编译单元,但我们还将为我们的一个类型编写一些代码,因为我们不必担心多个类型化的表达式
static std::unique_ptr<DIBuilder> DBuilder;
struct DebugInfo {
DICompileUnit *TheCU;
DIType *DblTy;
DIType *getDoubleTy();
} KSDbgInfo;
DIType *DebugInfo::getDoubleTy() {
if (DblTy)
return DblTy;
DblTy = DBuilder->createBasicType("double", 64, dwarf::DW_ATE_float);
return DblTy;
}
然后稍后在 main
中,当我们构建模块时
DBuilder = std::make_unique<DIBuilder>(*TheModule);
KSDbgInfo.TheCU = DBuilder->createCompileUnit(
dwarf::DW_LANG_C, DBuilder->createFile("fib.ks", "."),
"Kaleidoscope Compiler", false, "", 0);
这里需要注意几件事。首先,虽然我们正在为名为万花筒的语言生成编译单元,但我们使用了 C 语言的常量。这是因为调试器不一定理解它不识别的语言的调用约定或默认 ABI,并且我们在 LLVM 代码生成中遵循 C ABI,因此它是最接近准确的事物。这确保我们实际上可以从调试器调用函数并使其执行。其次,您将在对 createCompileUnit
的调用中看到“fib.ks”。这是一个默认的硬编码值,因为我们使用 shell 重定向将我们的源代码放入万花筒编译器中。在通常的前端中,您将拥有一个输入文件名,它将放在那里。
通过 DIBuilder 发射调试信息的最后一件事是,我们需要“完成”调试信息。原因是 DIBuilder 的底层 API 的一部分,但请确保在 main 结束附近执行此操作
DBuilder->finalize();
在转储模块之前。
9.6. 函数¶
现在我们有了 Compile Unit
和我们的源位置,我们可以将函数定义添加到调试信息中。因此,在 FunctionAST::codegen()
中,我们添加了几行代码来描述子程序的上下文,在本例中为“文件”,以及函数本身的实际定义。
因此上下文
DIFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU->getFilename(),
KSDbgInfo.TheCU->getDirectory());
为我们提供一个 DIFile,并询问我们在上面创建的 Compile Unit
当前所在的目录和文件名。然后,目前,我们使用一些源位置 0(因为我们的 AST 目前没有源位置信息)并构建我们的函数定义
DIScope *FContext = Unit;
unsigned LineNo = 0;
unsigned ScopeLine = 0;
DISubprogram *SP = DBuilder->createFunction(
FContext, P.getName(), StringRef(), Unit, LineNo,
CreateFunctionType(TheFunction->arg_size()),
ScopeLine,
DINode::FlagPrototyped,
DISubprogram::SPFlagDefinition);
TheFunction->setSubprogram(SP);
现在我们有了包含函数元数据引用的 DISubprogram。
9.7. 源位置¶
调试信息最重要的事情是准确的源位置——这使得将您的源代码映射回来成为可能。但是,我们有一个问题,万花筒在词法分析器或解析器中实际上没有任何源位置信息,因此我们需要添加它。
struct SourceLocation {
int Line;
int Col;
};
static SourceLocation CurLoc;
static SourceLocation LexLoc = {1, 0};
static int advance() {
int LastChar = getchar();
if (LastChar == '\n' || LastChar == '\r') {
LexLoc.Line++;
LexLoc.Col = 0;
} else
LexLoc.Col++;
return LastChar;
}
在这段代码中,我们添加了一些关于如何跟踪“源文件”的行号和列号的功能。当我们分析每个标记时,我们将当前的“词法位置”设置为标记开头的行号和列号。我们通过用新的 advance()
覆盖所有先前的对 getchar()
的调用来实现这一点,该函数跟踪信息,然后我们在所有 AST 类中添加了一个源位置
class ExprAST {
SourceLocation Loc;
public:
ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
virtual ~ExprAST() {}
virtual Value* codegen() = 0;
int getLine() const { return Loc.Line; }
int getCol() const { return Loc.Col; }
virtual raw_ostream &dump(raw_ostream &out, int ind) {
return out << ':' << getLine() << ':' << getCol() << '\n';
}
当我们创建新的表达式时,我们会将其传递下去
LHS = std::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),
std::move(RHS));
为我们提供了每个表达式和变量的位置。
为了确保每个指令都获得正确的源位置信息,我们必须在每次处于新源位置时告诉 Builder
。我们为此使用一个小的辅助函数
void DebugInfo::emitLocation(ExprAST *AST) {
if (!AST)
return Builder->SetCurrentDebugLocation(DebugLoc());
DIScope *Scope;
if (LexicalBlocks.empty())
Scope = TheCU;
else
Scope = LexicalBlocks.back();
Builder->SetCurrentDebugLocation(
DILocation::get(Scope->getContext(), AST->getLine(), AST->getCol(), Scope));
}
这既告诉主 IRBuilder
我们在哪里,也告诉我们处于哪个作用域。作用域可以是编译单元级别,也可以是最近的封闭词法块,例如当前函数。为了表示这一点,我们在 DebugInfo
中创建了一个作用域堆栈
std::vector<DIScope *> LexicalBlocks;
并在我们开始为每个函数生成代码时将作用域(函数)推入堆栈顶部
KSDbgInfo.LexicalBlocks.push_back(SP);
此外,我们可能不要忘记在函数代码生成结束时将作用域从作用域堆栈中弹出
// Pop off the lexical block for the function since we added it
// unconditionally.
KSDbgInfo.LexicalBlocks.pop_back();
然后,我们确保在每次开始为新的 AST 对象生成代码时都发出位置
KSDbgInfo.emitLocation(this);
9.8. 变量¶
现在我们有了函数,我们需要能够打印出我们作用域内的变量。让我们设置函数参数,以便我们可以获得不错的回溯并查看我们的函数是如何被调用的。代码不多,我们通常在 FunctionAST::codegen
中创建参数 alloca 时处理它。
// Record the function arguments in the NamedValues map.
NamedValues.clear();
unsigned ArgIdx = 0;
for (auto &Arg : TheFunction->args()) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
// Create a debug descriptor for the variable.
DILocalVariable *D = DBuilder->createParameterVariable(
SP, Arg.getName(), ++ArgIdx, Unit, LineNo, KSDbgInfo.getDoubleTy(),
true);
DBuilder->insertDeclare(Alloca, D, DBuilder->createExpression(),
DILocation::get(SP->getContext(), LineNo, 0, SP),
Builder->GetInsertBlock());
// Store the initial value into the alloca.
Builder->CreateStore(&Arg, Alloca);
// Add arguments to variable symbol table.
NamedValues[std::string(Arg.getName())] = Alloca;
}
首先,我们创建变量,并指定其作用域(SP
)、名称、源位置、类型,以及由于它是一个参数,所以还要指定参数索引。接下来,我们创建一个#dbg_declare
记录,以在 IR 级别指示我们有一个变量位于 alloca 中(并为该变量提供起始位置),并在声明上设置作用域开始的源位置。
需要特别注意的是,各种调试器都基于过去代码和调试信息生成方式做出了一些假设。在本例中,我们需要进行一些小的调整,以避免为函数序言生成行信息,以便调试器在设置断点时知道跳过这些指令。因此,在FunctionAST::CodeGen
中,我们添加了一些行
// Unset the location for the prologue emission (leading instructions with no
// location in a function are considered part of the prologue and the debugger
// will run past them when breaking on a function)
KSDbgInfo.emitLocation(nullptr);
然后,当我们真正开始为函数体生成代码时,发出一个新的位置。
KSDbgInfo.emitLocation(Body.get());
通过这些操作,我们拥有了足够的信息来在函数中设置断点,打印参数变量以及调用函数。仅仅几行简单的代码就能做到这些,真是不错!
9.9. 完整代码清单¶
以下是我们正在运行的示例的完整代码清单,其中添加了调试信息。要构建此示例,请使用
# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
# Run
./toy
以下是代码
#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <cstdio>
#include <map>
#include <string>
#include <vector>
using namespace llvm;
using namespace llvm::orc;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2,
tok_extern = -3,
// primary
tok_identifier = -4,
tok_number = -5,
// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10,
// operators
tok_binary = -11,
tok_unary = -12,
// var definition
tok_var = -13
};
std::string getTokName(int Tok) {
switch (Tok) {
case tok_eof:
return "eof";
case tok_def:
return "def";
case tok_extern:
return "extern";
case tok_identifier:
return "identifier";
case tok_number:
return "number";
case tok_if:
return "if";
case tok_then:
return "then";
case tok_else:
return "else";
case tok_for:
return "for";
case tok_in:
return "in";
case tok_binary:
return "binary";
case tok_unary:
return "unary";
case tok_var:
return "var";
}
return std::string(1, (char)Tok);
}
namespace {
class PrototypeAST;
class ExprAST;
}
struct DebugInfo {
DICompileUnit *TheCU;
DIType *DblTy;
std::vector<DIScope *> LexicalBlocks;
void emitLocation(ExprAST *AST);
DIType *getDoubleTy();
} KSDbgInfo;
struct SourceLocation {
int Line;
int Col;
};
static SourceLocation CurLoc;
static SourceLocation LexLoc = {1, 0};
static int advance() {
int LastChar = getchar();
if (LastChar == '\n' || LastChar == '\r') {
LexLoc.Line++;
LexLoc.Col = 0;
} else
LexLoc.Col++;
return LastChar;
}
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = advance();
CurLoc = LexLoc;
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = advance())))
IdentifierStr += LastChar;
if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
if (IdentifierStr == "if")
return tok_if;
if (IdentifierStr == "then")
return tok_then;
if (IdentifierStr == "else")
return tok_else;
if (IdentifierStr == "for")
return tok_for;
if (IdentifierStr == "in")
return tok_in;
if (IdentifierStr == "binary")
return tok_binary;
if (IdentifierStr == "unary")
return tok_unary;
if (IdentifierStr == "var")
return tok_var;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = advance();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do
LastChar = advance();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = advance();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
raw_ostream &indent(raw_ostream &O, int size) {
return O << std::string(size, ' ');
}
/// ExprAST - Base class for all expression nodes.
class ExprAST {
SourceLocation Loc;
public:
ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
virtual ~ExprAST() {}
virtual Value *codegen() = 0;
int getLine() const { return Loc.Line; }
int getCol() const { return Loc.Col; }
virtual raw_ostream &dump(raw_ostream &out, int ind) {
return out << ':' << getLine() << ':' << getCol() << '\n';
}
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
public:
NumberExprAST(double Val) : Val(Val) {}
raw_ostream &dump(raw_ostream &out, int ind) override {
return ExprAST::dump(out << Val, ind);
}
Value *codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
public:
VariableExprAST(SourceLocation Loc, const std::string &Name)
: ExprAST(Loc), Name(Name) {}
const std::string &getName() const { return Name; }
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
return ExprAST::dump(out << Name, ind);
}
};
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
std::unique_ptr<ExprAST> Operand;
public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(Opcode), Operand(std::move(Operand)) {}
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "unary" << Opcode, ind);
Operand->dump(out, ind + 1);
return out;
}
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;
public:
BinaryExprAST(SourceLocation Loc, char Op, std::unique_ptr<ExprAST> LHS,
std::unique_ptr<ExprAST> RHS)
: ExprAST(Loc), Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "binary" << Op, ind);
LHS->dump(indent(out, ind) << "LHS:", ind + 1);
RHS->dump(indent(out, ind) << "RHS:", ind + 1);
return out;
}
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;
public:
CallExprAST(SourceLocation Loc, const std::string &Callee,
std::vector<std::unique_ptr<ExprAST>> Args)
: ExprAST(Loc), Callee(Callee), Args(std::move(Args)) {}
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "call " << Callee, ind);
for (const auto &Arg : Args)
Arg->dump(indent(out, ind + 1), ind + 1);
return out;
}
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
std::unique_ptr<ExprAST> Cond, Then, Else;
public:
IfExprAST(SourceLocation Loc, std::unique_ptr<ExprAST> Cond,
std::unique_ptr<ExprAST> Then, std::unique_ptr<ExprAST> Else)
: ExprAST(Loc), Cond(std::move(Cond)), Then(std::move(Then)),
Else(std::move(Else)) {}
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "if", ind);
Cond->dump(indent(out, ind) << "Cond:", ind + 1);
Then->dump(indent(out, ind) << "Then:", ind + 1);
Else->dump(indent(out, ind) << "Else:", ind + 1);
return out;
}
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)
: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "for", ind);
Start->dump(indent(out, ind) << "Cond:", ind + 1);
End->dump(indent(out, ind) << "End:", ind + 1);
Step->dump(indent(out, ind) << "Step:", ind + 1);
Body->dump(indent(out, ind) << "Body:", ind + 1);
return out;
}
};
/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
std::unique_ptr<ExprAST> Body;
public:
VarExprAST(
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
std::unique_ptr<ExprAST> Body)
: VarNames(std::move(VarNames)), Body(std::move(Body)) {}
Value *codegen() override;
raw_ostream &dump(raw_ostream &out, int ind) override {
ExprAST::dump(out << "var", ind);
for (const auto &NamedVar : VarNames)
NamedVar.second->dump(indent(out, ind) << NamedVar.first << ':', ind + 1);
Body->dump(indent(out, ind) << "Body:", ind + 1);
return out;
}
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
int Line;
public:
PrototypeAST(SourceLocation Loc, const std::string &Name,
std::vector<std::string> Args, bool IsOperator = false,
unsigned Prec = 0)
: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
Precedence(Prec), Line(Loc.Line) {}
Function *codegen();
const std::string &getName() const { return Name; }
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];
}
unsigned getBinaryPrecedence() const { return Precedence; }
int getLine() const { return Line; }
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *codegen();
raw_ostream &dump(raw_ostream &out, int ind) {
indent(out, ind) << "FunctionAST\n";
++ind;
indent(out, ind) << "Body:";
return Body ? Body->dump(out, ind) : out << "null\n";
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;
return TokPrec;
}
/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;
}
std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;
}
static std::unique_ptr<ExprAST> ParseExpression();
/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = std::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;
if (CurTok != ')')
return LogError("expected ')'");
getNextToken(); // eat ).
return V;
}
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
SourceLocation LitLoc = CurLoc;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return std::make_unique<VariableExprAST>(LitLoc, IdName);
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {
if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));
else
return nullptr;
if (CurTok == ')')
break;
if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return std::make_unique<CallExprAST>(LitLoc, IdName, std::move(Args));
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
SourceLocation IfLoc = CurLoc;
getNextToken(); // eat the if.
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
if (CurTok != tok_then)
return LogError("expected then");
getNextToken(); // eat the then
auto Then = ParseExpression();
if (!Then)
return nullptr;
if (CurTok != tok_else)
return LogError("expected else");
getNextToken();
auto Else = ParseExpression();
if (!Else)
return nullptr;
return std::make_unique<IfExprAST>(IfLoc, std::move(Cond), std::move(Then),
std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return LogError("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return LogError("expected '=' after for");
getNextToken(); // eat '='.
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return LogError("expected ',' after for start value");
getNextToken();
auto End = ParseExpression();
if (!End)
return nullptr;
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)
return nullptr;
}
if (CurTok != tok_in)
return LogError("expected 'in' after for");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));
}
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
// At least one variable name is required.
if (CurTok != tok_identifier)
return LogError("expected identifier after var");
while (true) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
// Read the optional initializer.
std::unique_ptr<ExprAST> Init = nullptr;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
if (!Init)
return nullptr;
}
VarNames.push_back(std::make_pair(Name, std::move(Init)));
// End of var list, exit loop.
if (CurTok != ',')
break;
getNextToken(); // eat the ','.
if (CurTok != tok_identifier)
return LogError("expected identifier list after var");
}
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return LogError("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
case tok_if:
return ParseIfExpr();
case tok_for:
return ParseForExpr();
case tok_var:
return ParseVarExpr();
}
}
/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
return nullptr;
}
/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
SourceLocation BinLoc = CurLoc;
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)
return nullptr;
}
// Merge LHS/RHS.
LHS = std::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),
std::move(RHS));
}
}
/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
SourceLocation FnLoc = CurLoc;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");
case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;
case tok_unary:
getNextToken();
if (!isascii(CurTok))
return LogErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;
case tok_binary:
getNextToken();
if (!isascii(CurTok))
return LogErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
return LogErrorP("Invalid precedence: must be 1..100");
BinaryPrecedence = (unsigned)NumVal;
getNextToken();
}
break;
}
if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");
return std::make_unique<PrototypeAST>(FnLoc, FnName, ArgNames, Kind != 0,
BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;
if (auto E = ParseExpression())
return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
return nullptr;
}
/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
SourceLocation FnLoc = CurLoc;
if (auto E = ParseExpression()) {
// Make the top-level expression be our "main" function.
auto Proto = std::make_unique<PrototypeAST>(FnLoc, "main",
std::vector<std::string>());
return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
return nullptr;
}
/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Code Generation Globals
//===----------------------------------------------------------------------===//
static std::unique_ptr<LLVMContext> TheContext;
static std::unique_ptr<Module> TheModule;
static std::unique_ptr<IRBuilder<>> Builder;
static ExitOnError ExitOnErr;
static std::map<std::string, AllocaInst *> NamedValues;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
//===----------------------------------------------------------------------===//
// Debug Info Support
//===----------------------------------------------------------------------===//
static std::unique_ptr<DIBuilder> DBuilder;
DIType *DebugInfo::getDoubleTy() {
if (DblTy)
return DblTy;
DblTy = DBuilder->createBasicType("double", 64, dwarf::DW_ATE_float);
return DblTy;
}
void DebugInfo::emitLocation(ExprAST *AST) {
if (!AST)
return Builder->SetCurrentDebugLocation(DebugLoc());
DIScope *Scope;
if (LexicalBlocks.empty())
Scope = TheCU;
else
Scope = LexicalBlocks.back();
Builder->SetCurrentDebugLocation(DILocation::get(
Scope->getContext(), AST->getLine(), AST->getCol(), Scope));
}
static DISubroutineType *CreateFunctionType(unsigned NumArgs) {
SmallVector<Metadata *, 8> EltTys;
DIType *DblTy = KSDbgInfo.getDoubleTy();
// Add the result type.
EltTys.push_back(DblTy);
for (unsigned i = 0, e = NumArgs; i != e; ++i)
EltTys.push_back(DblTy);
return DBuilder->createSubroutineType(DBuilder->getOrCreateTypeArray(EltTys));
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;
}
Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;
// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();
// If no existing prototype exists, return null.
return nullptr;
}
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
StringRef VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
}
Value *NumberExprAST::codegen() {
KSDbgInfo.emitLocation(this);
return ConstantFP::get(*TheContext, APFloat(Val));
}
Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");
KSDbgInfo.emitLocation(this);
// Load the value.
return Builder->CreateLoad(Type::getDoubleTy(*TheContext), V, Name.c_str());
}
Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)
return nullptr;
Function *F = getFunction(std::string("unary") + Opcode);
if (!F)
return LogErrorV("Unknown unary operator");
KSDbgInfo.emitLocation(this);
return Builder->CreateCall(F, OperandV, "unop");
}
Value *BinaryExprAST::codegen() {
KSDbgInfo.emitLocation(this);
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
if (!LHSE)
return LogErrorV("destination of '=' must be a variable");
// Codegen the RHS.
Value *Val = RHS->codegen();
if (!Val)
return nullptr;
// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
if (!Variable)
return LogErrorV("Unknown variable name");
Builder->CreateStore(Val, Variable);
return Val;
}
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;
switch (Op) {
case '+':
return Builder->CreateFAdd(L, R, "addtmp");
case '-':
return Builder->CreateFSub(L, R, "subtmp");
case '*':
return Builder->CreateFMul(L, R, "multmp");
case '<':
L = Builder->CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
default:
break;
}
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");
Value *Ops[] = {L, R};
return Builder->CreateCall(F, Ops, "binop");
}
Value *CallExprAST::codegen() {
KSDbgInfo.emitLocation(this);
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())
return nullptr;
}
return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::codegen() {
KSDbgInfo.emitLocation(this);
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;
// Convert condition to a bool by comparing non-equal to 0.0.
CondV = Builder->CreateFCmpONE(
CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
Builder->CreateCondBr(CondV, ThenBB, ElseBB);
// Emit then value.
Builder->SetInsertPoint(ThenBB);
Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder->GetInsertBlock();
// Emit else block.
TheFunction->insert(TheFunction->end(), ElseBB);
Builder->SetInsertPoint(ElseBB);
Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder->GetInsertBlock();
// Emit merge block.
TheFunction->insert(TheFunction->end(), MergeBB);
Builder->SetInsertPoint(MergeBB);
PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
// Output for-loop as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
KSDbgInfo.emitLocation(this);
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;
// Store the value into the alloca.
Builder->CreateStore(StartVal, Alloca);
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
Builder->CreateBr(LoopBB);
// Start insertion in LoopBB.
Builder->SetInsertPoint(LoopBB);
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = NamedValues[VarName];
NamedValues[VarName] = Alloca;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;
// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)
return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
}
// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder->CreateLoad(Type::getDoubleTy(*TheContext), Alloca,
VarName.c_str());
Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
Builder->CreateStore(NextVar, Alloca);
// Convert condition to a bool by comparing non-equal to 0.0.
EndCond = Builder->CreateFCmpONE(
EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
// Create the "after loop" block and insert it.
BasicBlock *AfterBB =
BasicBlock::Create(*TheContext, "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
Builder->SetInsertPoint(AfterBB);
// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;
else
NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(*TheContext));
}
Value *VarExprAST::codegen() {
std::vector<AllocaInst *> OldBindings;
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
ExprAST *Init = VarNames[i].second.get();
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {
InitVal = Init->codegen();
if (!InitVal)
return nullptr;
} else { // If not specified, use 0.0.
InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
}
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
Builder->CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(NamedValues[VarName]);
// Remember this binding.
NamedValues[VarName] = Alloca;
}
KSDbgInfo.emitLocation(this);
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)
return nullptr;
// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
NamedValues[VarNames[i].first] = OldBindings[i];
// Return the body computation.
return BodyVal;
}
Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
FunctionType *FT =
FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);
return F;
}
Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;
// If this is an operator, install it.
if (P.isBinaryOp())
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
Builder->SetInsertPoint(BB);
// Create a subprogram DIE for this function.
DIFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU->getFilename(),
KSDbgInfo.TheCU->getDirectory());
DIScope *FContext = Unit;
unsigned LineNo = P.getLine();
unsigned ScopeLine = LineNo;
DISubprogram *SP = DBuilder->createFunction(
FContext, P.getName(), StringRef(), Unit, LineNo,
CreateFunctionType(TheFunction->arg_size()), ScopeLine,
DINode::FlagPrototyped, DISubprogram::SPFlagDefinition);
TheFunction->setSubprogram(SP);
// Push the current scope.
KSDbgInfo.LexicalBlocks.push_back(SP);
// Unset the location for the prologue emission (leading instructions with no
// location in a function are considered part of the prologue and the debugger
// will run past them when breaking on a function)
KSDbgInfo.emitLocation(nullptr);
// Record the function arguments in the NamedValues map.
NamedValues.clear();
unsigned ArgIdx = 0;
for (auto &Arg : TheFunction->args()) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
// Create a debug descriptor for the variable.
DILocalVariable *D = DBuilder->createParameterVariable(
SP, Arg.getName(), ++ArgIdx, Unit, LineNo, KSDbgInfo.getDoubleTy(),
true);
DBuilder->insertDeclare(Alloca, D, DBuilder->createExpression(),
DILocation::get(SP->getContext(), LineNo, 0, SP),
Builder->GetInsertBlock());
// Store the initial value into the alloca.
Builder->CreateStore(&Arg, Alloca);
// Add arguments to variable symbol table.
NamedValues[std::string(Arg.getName())] = Alloca;
}
KSDbgInfo.emitLocation(Body.get());
if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder->CreateRet(RetVal);
// Pop off the lexical block for the function.
KSDbgInfo.LexicalBlocks.pop_back();
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
if (P.isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());
// Pop off the lexical block for the function since we added it
// unconditionally.
KSDbgInfo.LexicalBlocks.pop_back();
return nullptr;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static void InitializeModule() {
// Open a new module.
TheContext = std::make_unique<LLVMContext>();
TheModule = std::make_unique<Module>("my cool jit", *TheContext);
TheModule->setDataLayout(TheJIT->getDataLayout());
Builder = std::make_unique<IRBuilder<>>(*TheContext);
}
static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (!FnAST->codegen())
fprintf(stderr, "Error reading function definition:");
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (!ProtoAST->codegen())
fprintf(stderr, "Error reading extern");
else
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (!FnAST->codegen()) {
fprintf(stderr, "Error generating code for top level expr");
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
switch (CurTok) {
case tok_eof:
return;
case ';': // ignore top-level semicolons.
getNextToken();
break;
case tok_def:
HandleDefinition();
break;
case tok_extern:
HandleExtern();
break;
default:
HandleTopLevelExpression();
break;
}
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif
/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
fputc((char)X, stderr);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
getNextToken();
TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
InitializeModule();
// Add the current debug info version into the module.
TheModule->addModuleFlag(Module::Warning, "Debug Info Version",
DEBUG_METADATA_VERSION);
// Darwin only supports dwarf2.
if (Triple(sys::getProcessTriple()).isOSDarwin())
TheModule->addModuleFlag(llvm::Module::Warning, "Dwarf Version", 2);
// Construct the DIBuilder, we do this here because we need the module.
DBuilder = std::make_unique<DIBuilder>(*TheModule);
// Create the compile unit for the module.
// Currently down as "fib.ks" as a filename since we're redirecting stdin
// but we'd like actual source locations.
KSDbgInfo.TheCU = DBuilder->createCompileUnit(
dwarf::DW_LANG_C, DBuilder->createFile("fib.ks", "."),
"Kaleidoscope Compiler", false, "", 0);
// Run the main "interpreter loop" now.
MainLoop();
// Finalize the debug info.
DBuilder->finalize();
// Print out all of the generated code.
TheModule->print(errs(), nullptr);
return 0;
}